sparc files that were removed from revision 1.888

--HG--
extra : convert_revision : f285a442b64eee183f7d0f6c203f0b0aa7ea8586
This commit is contained in:
Korey Sewell 2006-01-29 17:25:54 -05:00
parent 0162c52f17
commit 8b783f8ad2
14 changed files with 1870 additions and 0 deletions

View file

@ -0,0 +1,82 @@
////////////////////////////////////////////////////////////////////
//
// Base class for sparc instructions, and some support functions
//
output header {{
/**
* Base class for all SPARC static instructions.
*/
class SparcStaticInst : public StaticInst<SPARCISA>
{
protected:
// Constructor.
SparcStaticInst(const char *mnem, MachInst _machInst, OpClass __opClass)
: StaticInst<SPARCISA>(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
bool passesCondition(struct {uint8_t c:1; uint8_t v:1; uint8_t z:1; uint8_t n:1} codes, uint8_t condition);
}};
output decoder {{
std::string SparcStaticInst::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
// just print the first two source regs... if there's
// a third one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
if(_numSrcRegs > 0)
{
printReg(ss, _srcRegIdx[0]);
}
if(_numSrcRegs > 1)
{
ss << ",";
printReg(ss, _srcRegIdx[1]);
}
// just print the first dest... if there's a second one,
// it's generally implicit
if(_numDestRegs > 0)
{
if(_numSrcRegs > 0)
ss << ",";
printReg(ss, _destRegIdx[0]);
}
return ss.str();
}
bool passesCondition(struct {uint8_t c:1; uint8_t v:1; uint8_t z:1; uint8_t n:1} codes, uint8_t condition)
{
switch(condition)
{
case 0b1000: return true;
case 0b0000: return false;
case 0b1001: return !codes.z;
case 0b0001: return codes.z;
case 0b1010: return !(codes.z | (codes.n ^ codes.v));
case 0b0010: return codes.z | (codes.n ^ codes.v);
case 0b1011: return !(codes.n ^ codes.v);
case 0b0011: return (codes.n ^ codes.v);
case 0b1100: return !(codes.c | codes.z);
case 0b0100: return (codes.c | codes.z);
case 0b1101: return !codes.c;
case 0b0101: return codes.c;
case 0b1110: return !codes.n;
case 0b0110: return codes.n;
case 0b1111: return !codes.v;
case 0b0111: return codes.v;
}
}
}};

View file

@ -0,0 +1,50 @@
////////////////////////////////////////////////////////////////////
//
// Bitfield definitions.
//
// Bitfields are shared liberally between instruction formats, so they are
// simply defined alphabetically
def bitfield A <29>;
def bitfield CC02 <20>;
def bitfield CC03 <25>;
def bitfield CC04 <11>;
def bitfield CC12 <21>;
def bitfield CC13 <26>;
def bitfield CC14 <12>;
def bitfield CC2 <18>;
def bitfield CMASK <6:4>;
def bitfield COND2 <28:25>;
def bitfield COND4 <17:14>;
def bitfield D16HI <21:20>;
def bitfield D16LO <13:0>;
def bitfield DISP19 <18:0>;
def bitfield DISP22 <21:0>;
def bitfield DISP30 <29:0>;
def bitfield FCN <29:26>;
def bitfield I <13>;
def bitfield IMM_ASI <12:5>;
def bitfield IMM22 <21:0>;
def bitfield MMASK <3:0>;
def bitfield OP <31:30>;
def bitfield OP2 <24:22>;
def bitfield OP3 <24:19>;
def bitfield OPF <13:5>;
def bitfield OPF_CC <13:11>;
def bitfield OPF_LOW5 <9:5>;
def bitfield OPF_LOW6 <10:5>;
def bitfield P <19>;
def bitfield RCOND2 <27:25>;
def bitfield RCOND3 <12:10>;
def bitfield RCOND4 <12:10>;
def bitfield RD <29:25>;
def bitfield RS1 <18:14>;
def bitfield RS2 <4:0>;
def bitfield SHCNT32 <4:0>;
def bitfield SHCNT64 <5:0>;
def bitfield SIMM10 <9:0>;
def bitfield SIMM11 <10:0>;
def bitfield SIMM13 <12:0>;
def bitfield SW_TRAP <6:0>;
def bitfield X <12>;

View file

@ -0,0 +1,638 @@
////////////////////////////////////////////////////////////////////
//
// The actual decoder specification
//
decode OP default Trap::unknown({{illegal_instruction}}) {
0x0: decode OP2 {
0x0: Trap::illtrap({{illegal_instruction}}); //ILLTRAP
0x1: Branch::bpcc({{
switch((CC12 << 1) | CC02)
{
case 1: case 3:
throw illegal_instruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND2))
;//branchHere
break;
}
}});//BPcc
0x2: Branch::bicc({{
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
}});//Bicc
0x3: Branch::bpr({{
switch(RCOND)
{
case 0: case 4:
throw illegal_instruction;
case 1:
if(Rs1 == 0) ;//branchHere
break;
case 2:
if(Rs1 <= 0) ;//branchHere
break;
case 3:
if(Rs1 < 0) ;//branchHere
break;
case 5:
if(Rs1 != 0) ;//branchHere
break;
case 6:
if(Rs1 > 0) ;//branchHere
break;
case 7:
if(Rs1 >= 0) ;//branchHere
break;
}
}}); //BPr
0x4: IntegerOp::sethi({{Rd = (IMM22 << 10) & 0xFFFFFC00;}}); //SETHI (or NOP if rd == 0 and imm == 0)
0x5: Trap::fbpfcc({{throw fp_disabled;}}); //FBPfcc
0x6: Trap::fbfcc({{throw fp_disabled;}}); //FBfcc
}
0x1: Branch::call({{
//branch here
Rd = xc->pc;
}});
0x2: decode OP3 {
format IntegerOp {
0x00: add({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
Rd = Rs1.sdw + val2;
}});//ADD
0x01: and({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & val2;
}});//AND
0x02: or({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | val2;
}});//OR
0x03: xor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw ^ val2;
}});//XOR
0x04: sub({{
INT64 val2 = ~((UINT64)(I ? SIMM13.sdw : Rs2.udw))+1;
Rd = Rs1.sdw + val2;
}});//SUB
0x05: andn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & ~val2;
}});//ANDN
0x06: orn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | ~val2;
}});//ORN
0x07: xnor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = ~(Rs1.udw ^ val2);
}});//XNOR
0x08: addc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = Rs1.sdw + val2 + carryin;
}});//ADDC
0x09: mulx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 * val2;
}});//MULX
0x0A: umul({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//UMUL
0x0B: smul({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.sdw);
rd.sdw = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//SMUL
0x0C: subc({{
INT64 val2 = ~((INT64)(I ? SIMM13.sdw : Rs2.sdw))+1;
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd.sdw = Rs1.sdw + val2 + carryin;
}});//SUBC
0x0D: udivx({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;
}});//UDIVX
0x0E: udiv({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;
}}); //UDIV
0x0F: sdiv({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;
}});//SDIV
}
format IntegerOpCc {
0x10: addcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDcc
0x11: andcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDcc
0x12: orcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORcc
0x13: xorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 ^ val2;}}
,{{0}},{{0}},{{0}},{{0}});//XORcc
0x14: subcc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 - val2;}},
{{((Rs1 & 0xFFFFFFFF + (~val2) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~val2) >> 1) + ((Rs1 | ~val2) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBcc
0x15: andncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDNcc
0x16: orncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORNcc
0x17: xnorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = ~(Rs1 ^ val2);}}
,{{0}},{{0}},{{0}},{{0}});//XNORcc
0x18: addccc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + val2 + carryin;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31 + carryin)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + ((Rs1 & val2) | (carryin & (Rs1 | val2)) & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDCcc
0x1A: umulcc({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//UMULcc
0x1B: smulcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//SMULcc
0x1C: subccc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + ~(val2 + carryin) + 1;}},
{{((Rs1 & 0xFFFFFFFF + (~(val2 + carryin)) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~(val2 + carryin)) >> 1) + ((Rs1 | ~(val2+carryin)) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBCcc
0x1D: udivxcc({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;}}
,{{0}},{{0}},{{0}},{{0}});//UDIVXcc
0x1E: udivcc({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;}},
{{0}},
{{overflow}},
{{0}},
{{0}}
);//UDIVcc
0x1F: sdivcc({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;}},
{{0}},
{{overflow || underflow}},
{{0}},
{{0}}
);//SDIVcc
0x20: taddcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDcc
0x21: tsubcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBcc
0x22: taddcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDccTV
0x23: tsubcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBccTV
0x24: mulscc({{
INT64 resTemp, multiplicand = (I ? SIMM13.sdw : Rs2);
INT32 multiplier = Rs1<31:0>;
INT32 savedLSB = Rs1<0:>;
multiplier = multipler<31:1> |
((xc->regs.MiscRegs.ccrFields.iccFields.n
^ xc->regs.MiscRegs.ccrFields.iccFields.v) << 32);
if(!xc->regs.MiscRegs.yFields.value<0:>)
multiplicand = 0;
Rd = resTemp = multiplicand + multiplier;
xc->regs.MiscRegs.yFields.value = xc->regs.MiscRegs.yFields.value<31:1> | (savedLSB << 31);}},
{{((multiplicand & 0xFFFFFFFF + multiplier & 0xFFFFFFFF) >> 31)}},
{{multiplicand<31:> == multiplier<31:> && multiplier<31:> != resTemp<31:>}},
{{((multiplicand >> 1) + (multiplier >> 1) + (multiplicand & multiplier & 0x1))<63:>}},
{{multiplicand<63:> == multiplier<63:> && multiplier<63:> != resTemp<63:>}}
);//MULScc
}
format IntegerOp
{
0x25: decode X {
0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}}); //SLL
0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}}); //SLLX
}
0x26: decode X {
0x0: srl({{Rd = Rs1.udw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRL
0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRLX
}
0x27: decode X {
0x0: sra({{Rd = Rs1.sdw<31:0> >> (I ? SHCNT32 : Rs2<4:0>);}}); //SRA
0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}});//SRAX
}
0x28: decode RS1 {
0x0: rdy({{Rd = xc->regs.MiscRegs.yFields.value;}}); //RDY
0x2: rdccr({{Rd = xc->regs.MiscRegs.ccr;}}); //RDCCR
0x3: rdasi({{Rd = xc->regs.MiscRegs.asi;}}); //RDASI
0x4: rdtick({{
if(xc->regs.MiscRegs.pstateFields.priv == 0 &&
xc->regs.MiscRegs.tickFields.npt == 1)
throw privileged_action;
Rd = xc->regs.MiscRegs.tick;
}});//RDTICK
0x5: rdpc({{Rd = xc->regs.pc;}}); //RDPC
0x6: rdfprs({{Rd = xc->regs.MiscRegs.fprs;}}); //RDFPRS
0xF: decode I {
0x0: Noop::membar({{//Membar isn't needed yet}}); //MEMBAR
0x1: Noop::stbar({{//Stbar isn/'t needed yet}}); //STBAR
}
}
0x2A: decode RS1 {
0x0: rdprtpc({{checkPriv Rd = xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl];}});
0x1: rdprtnpc({{checkPriv Rd = xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl];}});
0x2: rdprtstate({{checkPriv Rd = xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl];}});
0x3: rdprtt({{checkPriv Rd = xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl];}});
0x4: rdprtick({{checkPriv Rd = xc->regs.MiscRegs.tick;}});
0x5: rdprtba({{checkPriv Rd = xc->regs.MiscRegs.tba;}});
0x6: rdprpstate({{checkPriv Rd = xc->regs.MiscRegs.pstate;}});
0x7: rdprtl({{checkPriv Rd = xc->regs.MiscRegs.tl;}});
0x8: rdprpil({{checkPriv Rd = xc->regs.MiscRegs.pil;}});
0x9: rdprcwp({{checkPriv Rd = xc->regs.MiscRegs.cwp;}});
0xA: rdprcansave({{checkPriv Rd = xc->regs.MiscRegs.cansave;}});
0xB: rdprcanrestore({{checkPriv Rd = xc->regs.MiscRegs.canrestore;}});
0xC: rdprcleanwin({{checkPriv Rd = xc->regs.MiscRegs.cleanwin;}});
0xD: rdprotherwin({{checkPriv Rd = xc->regs.MiscRegs.otherwin;}});
0xE: rdprwstate({{checkPriv Rd = xc->regs.MiscRegs.wstate;}});
0xF: rdprfq({{throw illegal_instruction;}}); //The floating point queue isn't implemented right now.
}
0x2B: BasicOperate::flushw({{\\window toilet}}); //FLUSHW
0x2C: movcc({{
ccBank = (CC24 << 2) | (CC14 << 1) | (CC04 << 0);
switch(ccBank)
{
case 0: case 1: case 2: case 3:
throw fp_disabled;
break;
case 5: case 7:
throw illegal_instruction;
break;
case 4:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND4))
Rd = (I ? SIMM11.sdw : RS2);
break;
case 6:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND4))
Rd = (I ? SIMM11.sdw : RS2);
break;
}
}});//MOVcc
0x2D: sdivx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
if(val2 == 0) throw division_by_zero;
Rd.sdw = Rs1.sdw / val2;
}});//SDIVX
0x2E: decode RS1 {
0x0: IntegerOp::popc({{
INT64 count = 0, val2 = (I ? SIMM13.sdw : Rs2.sdw);
UINT8 oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}
for(unsigned int x = 0; x < 16; x++)
{
count += oneBits[val2 & 0xF];
val2 >> 4;
}
}});//POPC
}
0x2F: movr({{
UINT64 val2 = (I ? SIMM10.sdw : Rs2.sdw);
switch(RCOND)
{
case 0: case 4:
throw illegal_instruction;
break;
case 1:
if(Rs1 == 0) Rd = val2;
break;
case 2:
if(Rs1 <= 0) Rd = val2;
break;
case 3:
if(Rs1 = 0) Rd = val2;
break;
case 5:
if(Rs1 != 0) Rd = val2;
break;
case 6:
if(Rs1 > 0) Rd = val2;
break;
case 7:
if(Rs1 >= 0) Rd = val2;
break;
}
}});//MOVR
0x30: decode RD {
0x0: wry({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.y = Rs1 ^ val2;
}});//WRY
0x2: wrccr({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.ccr = Rs1 ^ val2;
}});//WRCCR
0x3: wrasi({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRASI
0x6: wrfprs({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRFPRS
0xF: Trap::sir({{software_initiated_reset}}); //SIR
}
0x31: decode FCN {
0x0: BasicOperate::saved({{\\Boogy Boogy}}); //SAVED
0x1: BasicOperate::restored({{\\Boogy Boogy}}); //RESTORED
}
0x32: decode RD {
0x0: wrprtpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x1: wrprtnpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x2: wrprtstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x3: wrprtt({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x4: wrprtick({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tick = Rs1 ^ val2;
}});
0x5: wrprtba({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tba = Rs1 ^ val2;
}});
0x6: wrprpstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pstate = Rs1 ^ val2;
}});
0x7: wrprtl({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tl = Rs1 ^ val2;
}});
0x8: wrprpil({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pil = Rs1 ^ val2;
}});
0x9: wrprcwp({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cwp = Rs1 ^ val2;
}});
0xA: wrprcansave({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cansave = Rs1 ^ val2;
}});
0xB: wrprcanrestore({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.canrestore = Rs1 ^ val2;
}});
0xC: wrprcleanwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cleanwin = Rs1 ^ val2;
}});
0xD: wrprotherwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.otherwin = Rs1 ^ val2;
}});
0xE: wrprwstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.wstate = Rs1 ^ val2;
}});
}
0x34: Trap::fpop1({{Throw fp_disabled;}}); //FPOP1
0x35: Trap::fpop2({{Throw fp_disabled;}}); //FPOP2
0x38: Branch::jmpl({{//Stuff}}); //JMPL
0x39: Branch::return({{//Other Stuff}}); //RETURN
0x3A: Trap::tcc({{
switch((CC14 << 1) | (CC04 << 0))
{
case 1: case 3:
throw illegal_instruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, machInst<25:28>))
throw trap_instruction;
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, machInst<25:28>))
throw trap_instruction;
break;
}
}}); //Tcc
0x3B: BasicOperate::flush({{//Lala}}); //FLUSH
0x3C: BasicOperate::save({{//leprechauns); //SAVE
0x3D: BasicOperate::restore({{//Eat my short int}}); //RESTORE
0x3E: decode FCN {
0x1: BasicOperate::done({{//Done thing}}); //DONE
0x2: BasicOperate::retry({{//Retry thing}}); //RETRY
}
}
}
0x3: decode OP3 {
format Mem {
0x00: lduw({{Rd.uw = Mem.uw;}}); //LDUW
0x01: ldub({{Rd.ub = Mem.ub;}}); //LDUB
0x02: lduh({{Rd.uhw = Mem.uhw;}}); //LDUH
0x03: ldd({{
UINT64 val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}});//LDD
0x04: stw({{Mem.sw = Rd.sw;}}); //STW
0x05: stb({{Mem.sb = Rd.sb;}}); //STB
0x06: sth({{Mem.shw = Rd.shw;}}); //STH
0x07: std({{
Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32);
}});//STD
0x08: ldsw({{Rd.sw = Mem.sw;}}); //LDSW
0x09: ldsb({{Rd.sb = Mem.sb;}}); //LDSB
0x0A: ldsh({{Rd.shw = Mem.shw;}}); //LDSH
0x0B: ldx({{Rd.udw = Mem.udw;}}); //LDX
0x0D: ldstub({{
Rd.ub = Mem.ub;
Mem.ub = 0xFF;
}}); //LDSTUB
0x0E: stx({{Rd.udw = Mem.udw;}}); //STX
0x0F: swap({{
UINT32 temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAP
0x10: lduwa({{Rd.uw = Mem.uw;}}); //LDUWA
0x11: lduba({{Rd.ub = Mem.ub;}}); //LDUBA
0x12: lduha({{Rd.uhw = Mem.uhw;}}); //LDUHA
0x13: ldda({{
UINT64 val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}}); //LDDA
0x14: stwa({{Mem.uw = Rd.uw;}}); //STWA
0x15: stba({{Mem.ub = Rd.ub;}}); //STBA
0x16: stha({{Mem.uhw = Rd.uhw;}}); //STHA
0x17: stda({{
Mem.udw = readIntReg(RD & (~1))<31:0> | (readIntReg(RD | 1)<31:0> << 32);
}}); //STDA
0x18: ldswa({{Rd.sw = Mem.sw;}}); //LDSWA
0x19: ldsba({{Rd.sb = Mem.sb;}}); //LDSBA
0x1A: ldsha({{Rd.shw = Mem.shw;}}); //LDSHA
0x1B: ldxa({{Rd.sdw = Mem.sdw;}}); //LDXA
0x1D: ldstuba({{
Rd.ub = Mem.ub;
Mem.ub = 0xFF;
}}); //LDSTUBA
0x1E: stxa({{Mem.sdw = Rd.sdw}}); //STXA
0x1F: swapa({{
UINT32 temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAPA
0x20: Trap::ldf({{throw fp_disabled;}}); //LDF
0x21: decode X {
0x0: Trap::ldfsr({{throw fp_disabled;}}); //LDFSR
0x1: Trap::ldxfsr({{throw fp_disabled;}}); //LDXFSR
}
0x22: Trap::ldqf({{throw fp_disabled;}}); //LDQF
0x23: Trap::lddf({{throw fp_disabled;}}); //LDDF
0x24: Trap::stf({{throw fp_disabled;}}); //STF
0x25: decode X {
0x0: Trap::stfsr({{throw fp_disabled;}}); //STFSR
0x1: Trap::stxfsr({{throw fp_disabled;}}); //STXFSR
}
0x26: Trap::stqf({{throw fp_disabled;}}); //STQF
0x27: Trap::stdf({{throw fp_disabled;}}); //STDF
0x2D: Noop::prefetch({{ }}); //PREFETCH
0x30: Trap::ldfa({{throw fp_disabled;}}); //LDFA
0x32: Trap::ldqfa({{throw fp_disabled;}}); //LDQFA
0x33: Trap::lddfa({{throw fp_disabled;}}); //LDDFA
0x34: Trap::stfa({{throw fp_disabled;}}); //STFA
0x35: Trap::stqfa({{throw fp_disabled;}}); //STQFA
0x36: Trap::stdfa({{throw fp_disabled;}}); //STDFA
0x3C: Cas::casa(
{{UINT64 val = Mem.uw;
if(Rs2.uw == val)
Mem.uw = Rd.uw;
Rd.uw = val;
}}); //CASA
0x3D: Noop::prefetcha({{ }}); //PREFETCHA
0x3E: Cas::casxa(
{{UINT64 val = Mem.udw;
if(Rs2 == val)
Mem.udw = Rd;
Rd = val;
}}); //CASXA
}
}
}

View file

@ -0,0 +1,19 @@
//Include the basic format
//Templates from this format are used later
##include "m5/arch/sparc/isa_desc/formats/basic.format"
//Include the integerOp and integerOpCc format
##include "m5/arch/sparc/isa_desc/formats/integerop.format"
//Include the mem format
##include "m5/arch/sparc/isa_desc/formats/mem.format"
//Include the trap format
##include "m5/arch/sparc/isa_desc/formats/trap.format"
//Include the branch format
##include "m5/arch/sparc/isa_desc/formats/branch.format"
//Include the noop format
##include "m5/arch/sparc/isa_desc/formats/noop.format"

View file

@ -0,0 +1,65 @@
// Declarations for execute() methods.
def template BasicExecDeclare {{
Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
// Basic instruction class declaration template.
def template BasicDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
public:
/// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
}};
// Basic instruction class constructor template.
def template BasicConstructor {{
inline %(class_name)s::%(class_name)s(MachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
}
}};
// Basic instruction class execute method template.
def template BasicExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if(fault == No_Fault)
{
%(op_wb)s;
}
return fault;
}
}};
// Basic decode template.
def template BasicDecode {{
return new %(class_name)s(machInst);
}};
// Basic decode template, passing mnemonic in as string arg to constructor.
def template BasicDecodeWithMnemonic {{
return new %(class_name)s("%(mnemonic)s", machInst);
}};
// The most basic instruction format... used only for a few misc. insts
def format BasicOperate(code, *flags) {{
iop = InstObjParams(name, Name, 'SparcStaticInst', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};

View file

@ -0,0 +1,66 @@
////////////////////////////////////////////////////////////////////
//
// Branch instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Branch : public SparcStaticInst
{
protected:
/// Constructor
Branch(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template BranchExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
checkPriv;
%(op_decl)s;
%(op_rd)s;
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Branch(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = BranchExecute.subst(iop)
}};

View file

@ -0,0 +1,110 @@
////////////////////////////////////////////////////////////////////
//
// Integer operate instructions
//
output header {{
/**
* Base class for integer operations.
*/
class IntegerOp : public SparcStaticInst
{
protected:
/// Constructor
IntegerOp(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string IntegerOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template IntegerExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//These are set to constants when the execute method
//is generated
bool useCc = ;
bool checkPriv = ;
//Attempt to execute the instruction
try
{
checkPriv;
%(op_decl)s;
%(op_rd)s;
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
if(useCc)
{
xc->regs.miscRegFile.ccrFields.iccFields.n = Rd & (1 << 63);
xc->regs.miscRegFile.ccrFields.iccFields.z = (Rd == 0);
xc->regs.miscRegFile.ccrFields.iccFields.v = ivValue;
xc->regs.miscRegFile.ccrFields.iccFields.c = icValue;
xc->regs.miscRegFile.ccrFields.xccFields.n = Rd & (1 << 31);
xc->regs.miscRegFile.ccrFields.xccFields.z = ((Rd & 0xFFFFFFFF) == 0);
xc->regs.miscRegFile.ccrFields.xccFields.v = xvValue;
xc->regs.miscRegFile.ccrFields.xccFields.c = xcValue;
}
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format IntegerOp(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
checkPriv = (code.find('checkPriv') != -1)
code.replace('checkPriv', '')
if checkPriv:
code.replace('checkPriv;', 'if(!xc->regs.miscRegFile.pstateFields.priv) throw privileged_opcode;')
else:
code.replace('checkPriv;', '')
for (marker, value) in (('ivValue', '0'), ('icValue', '0'),
('xvValue', '0'), ('xcValue', '0')):
code.replace(marker, value)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = IntegerExecute.subst(iop)
}};
// Primary format for integer operate instructions:
def format IntegerOpCc(code, icValue, ivValue, xcValue, xvValue, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
checkPriv = (code.find('checkPriv') != -1)
code.replace('checkPriv', '')
if checkPriv:
code.replace('checkPriv;', 'if(!xc->regs.miscRegFile.pstateFields.priv) throw privileged_opcode;')
else:
code.replace('checkPriv;', '')
for (marker, value) in (('ivValue', ivValue), ('icValue', icValue),
('xvValue', xvValue), ('xcValue', xcValue)):
code.replace(marker, value)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = IntegerExecute.subst(iop)
}};

View file

@ -0,0 +1,78 @@
////////////////////////////////////////////////////////////////////
//
// Mem instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Mem : public SparcStaticInst
{
protected:
/// Constructor
Mem(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Mem::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template MemExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
%(op_decl)s;
%(op_rd)s;
ea_code
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Mem(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = MemExecute.subst(iop)
exec_output.replace('ea_code', 'EA = I ? (R1 + SIMM13) : R1 + R2;');
}};
def format Cas(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = MemExecute.subst(iop)
exec_output.replace('ea_code', 'EA = R1;');
}};

View file

@ -0,0 +1,47 @@
////////////////////////////////////////////////////////////////////
//
// Noop instruction
//
output header {{
/**
* Base class for integer operations.
*/
class Noop : public SparcStaticInst
{
protected:
/// Constructor
Noop(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Noop::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template NoopExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Nothing to see here, move along
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Noop(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = NoopExecute.subst(iop)
}};

View file

@ -0,0 +1,53 @@
////////////////////////////////////////////////////////////////////
//
// Trap instructions
//
output header {{
/**
* Base class for integer operations.
*/
class Trap : public SparcStaticInst
{
protected:
/// Constructor
Trap(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Trap::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
}
}};
def template TrapExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
{
//Call into the trap handler with the appropriate fault
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
}
}};
// Primary format for integer operate instructions:
def format Trap(code, *opt_flags) {{
orig_code = code
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'SparcStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecodeWithMnemonic.subst(iop)
exec_output = TrapExecute.subst(iop)
}};

View file

@ -0,0 +1,40 @@
////////////////////////////////////////////////////////////////////
//
// Output include file directives.
//
output header {{
#include <sstream>
#include <iostream>
#include <iomanip>
#include "cpu/static_inst.hh"
#include "traps.hh"
#include "mem/mem_req.hh" // some constructors use MemReq flags
}};
output decoder {{
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "cpu/exec_context.hh" // for Jump::branchTarget()
#include <math.h>
#if defined(linux)
#include <fenv.h>
#endif
}};
output exec {{
#include <math.h>
#if defined(linux)
#include <fenv.h>
#endif
#ifdef FULL_SYSTEM
//#include "arch/alpha/pseudo_inst.hh"
#endif
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "sim/sim_exit.hh"
}};

View file

@ -0,0 +1,61 @@
// -*- mode:c++ -*-
//Copyright (c) 2003, 2004, 2005
//The Regents of The University of Michigan
//All Rights Reserved
//This code is part of the M5 simulator, developed by Nathan Binkert,
//Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
//from Ron Dreslinski, Dave Greene, Lisa Hsu, Kevin Lim, Ali Saidi,
//and Andrew Schultz.
//Permission is granted to use, copy, create derivative works and
//redistribute this software and such derivative works for any purpose,
//so long as the copyright notice above, this grant of permission, and
//the disclaimer below appear in all copies made; and so long as the
//name of The University of Michigan is not used in any advertising or
//publicity pertaining to the use or distribution of this software
//without specific, written prior authorization.
//THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
//UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT
//WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER EXPRESS OR
//IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
//MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE REGENTS OF
//THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE FOR ANY DAMAGES,
//INCLUDING DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
//DAMAGES, WITH RESPECT TO ANY CLAIM ARISING OUT OF OR IN CONNECTION
//WITH THE USE OF THE SOFTWARE, EVEN IF IT HAS BEEN OR IS HEREAFTER
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
////////////////////////////////////////////////////////////////////
//
// SPARC ISA description file.
//
////////////////////////////////////////////////////////////////////
//Include the C++ include directives
##include "m5/arch/sparc/isa_desc/includes.h"
////////////////////////////////////////////////////////////////////
//
// Namespace statement. Everything below this line will be in the
// SparcISAInst namespace.
//
namespace SparcISA;
//Include the bitfield definitions
##include "m5/arch/sparc/isa_desc/bitfields.h"
//Include the operand_types and operand definitions
##include "m5/arch/sparc/isa_desc/operands.h"
//Include the base class for sparc instructions, and some support code
##include "m5/arch/sparc/isa_desc/base.h"
//Include the definitions for the instruction formats
##include "m5/arch/sparc/isa_desc/formats.h"
//Include the decoder definition
##include "m5/arch/sparc/isa_desc/decoder.h"

View file

@ -0,0 +1,33 @@
def operand_types {{
'sb' : ('signed int', 8),
'ub' : ('unsigned int', 8),
'shw' : ('signed int', 16),
'uhw' : ('unsigned int', 16),
'sw' : ('signed int', 32),
'uw' : ('unsigned int', 32),
'sdw' : ('signed int', 64),
'udw' : ('unsigned int', 64),
'sf' : ('float', 32),
'df' : ('float', 64),
'qf' : ('float', 128)
}};
def operands {{
# Int regs default to unsigned, but code should not count on this.
# For clarity, descriptions that depend on unsigned behavior should
# explicitly specify '.uq'.
'Rd': IntRegOperandTraits('udw', 'RD', 'IsInteger', 1),
'Rs1': IntRegOperandTraits('udw', 'RS1', 'IsInteger', 2),
'Rs2': IntRegOperandTraits('udw', 'RS2', 'IsInteger', 3),
#'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
#'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
#'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
'Mem': MemOperandTraits('udw', None,
('IsMemRef', 'IsLoad', 'IsStore'), 4)
#'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
#'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
#'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
# The next two are hacks for non-full-system call-pal emulation
#'R0': IntRegOperandTraits('uq', '0', None, 1),
#'R16': IntRegOperandTraits('uq', '16', None, 1)
}};

528
arch/sparc/isa_traits.hh Normal file
View file

@ -0,0 +1,528 @@
/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __ARCH_SPARC_ISA_TRAITS_HH__
#define __ARCH_SPARC_ISA_TRAITS_HH__
#include "arch/sparc/faults.hh"
#include "base/misc.hh"
#include "sim/host.hh"
class FastCPU;
//class FullCPU;
//class Checkpoint;
#define TARGET_SPARC
template <class ISA> class StaticInst;
template <class ISA> class StaticInstPtr;
//namespace EV5
//{
// int DTB_ASN_ASN(uint64_t reg);
// int ITB_ASN_ASN(uint64_t reg);
//}
class SPARCISA
{
public:
typedef uint32_t MachInst;
typedef uint64_t Addr;
typedef uint8_t RegIndex;
enum
{
MemoryEnd = 0xffffffffffffffffULL,
NumFloatRegs = 32,
NumMiscRegs = 32,
MaxRegsOfAnyType = 32,
// Static instruction parameters
MaxInstSrcRegs = 3,
MaxInstDestRegs = 2,
// Maximum trap level
MaxTL = 4
// semantically meaningful register indices
ZeroReg = 0, // architecturally meaningful
// the rest of these depend on the ABI
}
typedef uint64_t IntReg;
class IntRegFile
{
private:
//For right now, let's pretend the register file is static
IntReg regs[32];
public:
IntReg & operator [] (RegIndex index)
{
//Don't allow indexes outside of the 32 registers
index &= 0x1F
return regs[index];
}
};
void inline serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regs, 32);
}
void inline unserialize(Checkpoint &*cp, const std::string &section)
{
UNSERIALIZE_ARRAY(regs, 32);
}
class FloatRegFile
{
private:
//By using the largest data type, we ensure everything
//is aligned correctly in memory
union
{
double double rawRegs[16];
uint64_t regDump[32];
};
class QuadRegs
{
private:
FloatRegFile * parent;
public:
QuadRegs(FloatRegFile * p) : parent(p) {;}
double double & operator [] (RegIndex index)
{
//Quad floats are index by the single
//precision register the start on,
//and only 16 should be accessed
index = (index >> 2) & 0xF;
return parent->rawRegs[index];
}
};
class DoubleRegs
{
private:
FloatRegFile * parent;
public:
DoubleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegIndex index)
{
//Double floats are index by the single
//precision register the start on,
//and only 32 should be accessed
index = (index >> 1) & 0x1F
return ((double [])parent->rawRegs)[index];
}
}
class SingleRegs
{
private:
FloatRegFile * parent;
public:
SingleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegFile index)
{
//Only 32 single floats should be accessed
index &= 0x1F
return ((float [])parent->rawRegs)[index];
}
}
public:
void inline serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regDump, 32);
}
void inline unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_ARRAY(regDump, 32);
}
QuadRegs quadRegs;
DoubleRegs doubleRegs;
SingleRegs singleRegs;
FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this)
{;}
};
// control register file contents
typedef uint64_t MiscReg;
// The control registers, broken out into fields
class MiscRegFile
{
public:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
}
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
const uint64_t :32; // reserved bits
} yFields;
}
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields:4;
} :4;
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields:4;
} :4;
} ccrFields;
}
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
const uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
const uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
}
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
}
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
}
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
const uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
const uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
}
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexecFields:5;
} :5;
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexecFields:5;
} :5;
uint64_t fcc0:2; // Floating-Point condtion codes
const uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
const uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields:5;
} :5;
const uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
const uint64_t :26; // Reserved bits
} fsrFields;
}
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
dl:1; // Dirty lower
du:1; // Dirty upper
fef:1; // FPRS enable floating-Point
} fprsFields;
};
void serialize(std::ostream & os)
{
SERIALIZE_SCALAR(pstate);
SERIAlIZE_SCALAR(tba);
SERIALIZE_SCALAR(y);
SERIALIZE_SCALAR(pil);
SERIALIZE_SCALAR(cwp);
SERIALIZE_ARRAY(tt, MaxTL);
SERIALIZE_SCALAR(ccr);
SERIALIZE_SCALAR(asi);
SERIALIZE_SCALAR(tl);
SERIALIZE_SCALAR(tpc);
SERIALIZE_SCALAR(tnpc);
SERIALIZE_ARRAY(tstate, MaxTL);
SERIALIZE_SCALAR(tick);
SERIALIZE_SCALAR(cansave);
SERIALIZE_SCALAR(canrestore);
SERIALIZE_SCALAR(otherwin);
SERIALIZE_SCALAR(cleanwin);
SERIALIZE_SCALAR(wstate);
SERIALIZE_SCALAR(ver);
SERIALIZE_SCALAR(fsr);
SERIALIZE_SCALAR(fprs);
}
void unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_SCALAR(pstate);
UNSERIAlIZE_SCALAR(tba);
UNSERIALIZE_SCALAR(y);
UNSERIALIZE_SCALAR(pil);
UNSERIALIZE_SCALAR(cwp);
UNSERIALIZE_ARRAY(tt, MaxTL);
UNSERIALIZE_SCALAR(ccr);
UNSERIALIZE_SCALAR(asi);
UNSERIALIZE_SCALAR(tl);
UNSERIALIZE_SCALAR(tpc);
UNSERIALIZE_SCALAR(tnpc);
UNSERIALIZE_ARRAY(tstate, MaxTL);
UNSERIALIZE_SCALAR(tick);
UNSERIALIZE_SCALAR(cansave);
UNSERIALIZE_SCALAR(canrestore);
UNSERIALIZE_SCALAR(otherwin);
UNSERIALIZE_SCALAR(cleanwin);
UNSERIALIZE_SCALAR(wstate);
UNSERIALIZE_SCALAR(ver);
UNSERIALIZE_SCALAR(fsr);
UNSERIALIZE_SCALAR(fprs);
}
};
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
struct RegFile
{
IntRegFile intRegFile; // (signed) integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
Addr pc; // Program Counter
Addr npc; // Next Program Counter
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
static StaticInstPtr<AlphaISA> decodeInst(MachInst);
// return a no-op instruction... used for instruction fetch faults
static const MachInst NoopMachInst;
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr)
{
return addr;
}
static inline Addr fetchPCToRealPC(const Addr &addr)
{
return addr;
}
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize()
{
return sizeof(MachInst);
}
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
static void zeroRegisters(XC *xc);
};
typedef SPARCISA TheISA;
typedef TheISA::MachInst MachInst;
typedef TheISA::Addr Addr;
typedef TheISA::RegIndex RegIndex;
typedef TheISA::IntReg IntReg;
typedef TheISA::IntRegFile IntRegFile;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegFile FloatRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::AnyReg AnyReg;
typedef TheISA::RegFile RegFile;
const int VMPageSize = TheISA::VMPageSize;
const int LogVMPageSize = TheISA::LogVMPageSize;
const int ZeroReg = TheISA::ZeroReg;
const int BranchPredAddrShiftAmt = TheISA::BranchPredAddrShiftAmt;
const int MaxAddr = (Addr)-1;
#ifndef FULL_SYSTEM
class SyscallReturn {
public:
template <class T>
SyscallReturn(T v, bool s)
{
retval = (uint64_t)v;
success = s;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
retval = (uint64_t)v;
}
~SyscallReturn() {}
SyscallReturn& operator=(const SyscallReturn& s) {
retval = s.retval;
success = s.success;
return *this;
}
bool successful() { return success; }
uint64_t value() { return retval; }
private:
uint64_t retval;
bool success;
};
#endif
#ifdef FULL_SYSTEM
#include "arch/alpha/ev5.hh"
#endif
#endif // __ARCH_SPARC_ISA_TRAITS_HH__