Mem: Add a maximum bandwidth to SimpleMemory

This patch makes a minor addition to the SimpleMemory by enforcing a
maximum data rate. The bandwidth is configurable, and a reasonable
value (12.8GB/s) has been choosen as the default.

The changes do add some complexity to the SimpleMemory, but they
should definitely be justifiable as this enables a far more realistic
setup using even this simple memory controller.

The rate regulation is done for reads and writes combined to reflect
the bidirectional data busses used by most (if not all) relevant
memories. Moreover, the regulation is done per packet as opposed to
long term, as it is the short term data rate (data bus width times
frequency) that is the limiting factor.

A follow-up patch bumps the stats for the regressions.
This commit is contained in:
Andreas Hansson 2012-09-18 10:30:02 -04:00
parent d1f3a3b91a
commit 7c55464aac
3 changed files with 130 additions and 19 deletions

View file

@ -47,3 +47,7 @@ class SimpleMemory(AbstractMemory):
port = SlavePort("Slave ports") port = SlavePort("Slave ports")
latency = Param.Latency('30ns', "Request to response latency") latency = Param.Latency('30ns', "Request to response latency")
latency_var = Param.Latency('0ns', "Request to response latency variance") latency_var = Param.Latency('0ns', "Request to response latency variance")
# The memory bandwidth limit default is set to 12.8GB/s which is
# representative of a x64 DDR3-1600 channel.
bandwidth = Param.MemoryBandwidth('12.8GB/s',
"Combined read and write bandwidth")

View file

@ -47,9 +47,11 @@
using namespace std; using namespace std;
SimpleMemory::SimpleMemory(const Params* p) : SimpleMemory::SimpleMemory(const SimpleMemoryParams* p) :
AbstractMemory(p), AbstractMemory(p),
port(name() + ".port", *this), lat(p->latency), lat_var(p->latency_var) port(name() + ".port", *this), lat(p->latency),
lat_var(p->latency_var), bandwidth(p->bandwidth),
isBusy(false), retryReq(false), releaseEvent(this)
{ {
} }
@ -89,6 +91,80 @@ SimpleMemory::doFunctionalAccess(PacketPtr pkt)
functionalAccess(pkt); functionalAccess(pkt);
} }
bool
SimpleMemory::recvTimingReq(PacketPtr pkt)
{
if (pkt->memInhibitAsserted()) {
// snooper will supply based on copy of packet
// still target's responsibility to delete packet
delete pkt;
return true;
}
// we should never get a new request after committing to retry the
// current one, the bus violates the rule as it simply sends a
// retry to the next one waiting on the retry list, so simply
// ignore it
if (retryReq)
return false;
// if we are busy with a read or write, remember that we have to
// retry
if (isBusy) {
retryReq = true;
return false;
}
// update the release time according to the bandwidth limit, and
// do so with respect to the time it takes to finish this request
// rather than long term as it is the short term data rate that is
// limited for any real memory
// only look at reads and writes when determining if we are busy,
// and for how long, as it is not clear what to regulate for the
// other types of commands
if (pkt->isRead() || pkt->isWrite()) {
// calculate an appropriate tick to release to not exceed
// the bandwidth limit
Tick duration = pkt->getSize() * bandwidth;
// only consider ourselves busy if there is any need to wait
// to avoid extra events being scheduled for (infinitely) fast
// memories
if (duration != 0) {
schedule(releaseEvent, curTick() + duration);
isBusy = true;
}
}
// go ahead and deal with the packet and put the response in the
// queue if there is one
bool needsResponse = pkt->needsResponse();
Tick latency = doAtomicAccess(pkt);
// turn packet around to go back to requester if response expected
if (needsResponse) {
// doAtomicAccess() should already have turned packet into
// atomic response
assert(pkt->isResponse());
port.schedTimingResp(pkt, curTick() + latency);
} else {
delete pkt;
}
return true;
}
void
SimpleMemory::release()
{
assert(isBusy);
isBusy = false;
if (retryReq) {
retryReq = false;
port.sendRetry();
}
}
SlavePort & SlavePort &
SimpleMemory::getSlavePort(const std::string &if_name, int idx) SimpleMemory::getSlavePort(const std::string &if_name, int idx)
{ {
@ -113,7 +189,8 @@ SimpleMemory::drain(Event *de)
SimpleMemory::MemoryPort::MemoryPort(const std::string& _name, SimpleMemory::MemoryPort::MemoryPort(const std::string& _name,
SimpleMemory& _memory) SimpleMemory& _memory)
: SimpleTimingPort(_name, &_memory), memory(_memory) : QueuedSlavePort(_name, &_memory, queueImpl),
queueImpl(_memory, *this), memory(_memory)
{ } { }
AddrRangeList AddrRangeList
@ -145,6 +222,12 @@ SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt)
pkt->popLabel(); pkt->popLabel();
} }
bool
SimpleMemory::MemoryPort::recvTimingReq(PacketPtr pkt)
{
return memory.recvTimingReq(pkt);
}
SimpleMemory* SimpleMemory*
SimpleMemoryParams::create() SimpleMemoryParams::create()
{ {

View file

@ -55,17 +55,22 @@
/** /**
* The simple memory is a basic single-ported memory controller with * The simple memory is a basic single-ported memory controller with
* an infinite throughput and a fixed latency, potentially with a * an configurable throughput and latency, potentially with a variance
* variance added to it. It uses a SimpleTimingPort to implement the * added to the latter. It uses a QueueSlavePort to avoid dealing with
* timing accesses. * the flow control of sending responses.
*/ */
class SimpleMemory : public AbstractMemory class SimpleMemory : public AbstractMemory
{ {
private: private:
class MemoryPort : public SimpleTimingPort class MemoryPort : public QueuedSlavePort
{ {
private:
/// Queue holding the response packets
SlavePacketQueue queueImpl;
SimpleMemory& memory; SimpleMemory& memory;
public: public:
@ -74,11 +79,13 @@ class SimpleMemory : public AbstractMemory
protected: protected:
virtual Tick recvAtomic(PacketPtr pkt); Tick recvAtomic(PacketPtr pkt);
virtual void recvFunctional(PacketPtr pkt); void recvFunctional(PacketPtr pkt);
virtual AddrRangeList getAddrRanges() const; bool recvTimingReq(PacketPtr pkt);
AddrRangeList getAddrRanges() const;
}; };
@ -87,10 +94,32 @@ class SimpleMemory : public AbstractMemory
Tick lat; Tick lat;
Tick lat_var; Tick lat_var;
/// Bandwidth in ticks per byte
const double bandwidth;
/**
* Track the state of the memory as either idle or busy, no need
* for an enum with only two states.
*/
bool isBusy;
/**
* Remember if we have to retry an outstanding request that
* arrived while we were busy.
*/
bool retryReq;
/**
* Release the memory after being busy and send a retry if a
* request was rejected in the meanwhile.
*/
void release();
EventWrapper<SimpleMemory, &SimpleMemory::release> releaseEvent;
public: public:
typedef SimpleMemoryParams Params; SimpleMemory(const SimpleMemoryParams *p);
SimpleMemory(const Params *p);
virtual ~SimpleMemory() { } virtual ~SimpleMemory() { }
unsigned int drain(Event* de); unsigned int drain(Event* de);
@ -98,17 +127,12 @@ class SimpleMemory : public AbstractMemory
virtual SlavePort& getSlavePort(const std::string& if_name, int idx = -1); virtual SlavePort& getSlavePort(const std::string& if_name, int idx = -1);
virtual void init(); virtual void init();
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
protected: protected:
Tick doAtomicAccess(PacketPtr pkt); Tick doAtomicAccess(PacketPtr pkt);
void doFunctionalAccess(PacketPtr pkt); void doFunctionalAccess(PacketPtr pkt);
virtual Tick calculateLatency(PacketPtr pkt); bool recvTimingReq(PacketPtr pkt);
Tick calculateLatency(PacketPtr pkt);
}; };