Updates for OzoneCPU.

build/SConstruct:
    Include Ozone CPU models.
cpu/cpu_models.py:
    Include OzoneCPU models.

--HG--
extra : convert_revision : 51a016c216cacd2cc613eed79653026c2edda4b3
This commit is contained in:
Kevin Lim 2006-04-22 18:45:01 -04:00
parent a8b03e4d01
commit 759ff4b910
34 changed files with 11324 additions and 375 deletions

View file

@ -222,7 +222,9 @@ env = conf.Finish()
env['ALL_ISA_LIST'] = ['alpha', 'sparc', 'mips']
# Define the universe of supported CPU models
env['ALL_CPU_LIST'] = ['SimpleCPU', 'FastCPU', 'FullCPU', 'AlphaFullCPU']
env['ALL_CPU_LIST'] = ['SimpleCPU', 'FastCPU', 'FullCPU', 'AlphaFullCPU',
'OzoneSimpleCPU', 'OzoneCPU']
# Sticky options get saved in the options file so they persist from
# one invocation to the next (unless overridden, in which case the new

View file

@ -68,4 +68,10 @@ CpuModel('FullCPU', 'full_cpu_exec.cc',
CpuModel('AlphaFullCPU', 'alpha_o3_exec.cc',
'#include "cpu/o3/alpha_dyn_inst.hh"',
{ 'CPU_exec_context': 'AlphaDynInst<AlphaSimpleImpl>' })
CpuModel('OzoneSimpleCPU', 'ozone_simple_exec.cc',
'#include "cpu/ozone/dyn_inst.hh"',
{ 'CPU_exec_context': 'OzoneDynInst<SimpleImpl>' })
CpuModel('OzoneCPU', 'ozone_exec.cc',
'#include "cpu/ozone/dyn_inst.hh"',
{ 'CPU_exec_context': 'OzoneDynInst<OzoneImpl>' })

5
cpu/ozone/back_end.cc Normal file
View file

@ -0,0 +1,5 @@
#include "cpu/ozone/back_end_impl.hh"
#include "cpu/ozone/ozone_impl.hh"
template class BackEnd<OzoneImpl>;

509
cpu/ozone/back_end.hh Normal file
View file

@ -0,0 +1,509 @@
#ifndef __CPU_OZONE_BACK_END_HH__
#define __CPU_OZONE_BACK_END_HH__
#include <list>
#include <queue>
#include <string>
#include "arch/faults.hh"
#include "base/timebuf.hh"
#include "cpu/inst_seq.hh"
#include "cpu/ozone/rename_table.hh"
#include "cpu/ozone/thread_state.hh"
#include "mem/functional/functional.hh"
#include "mem/mem_interface.hh"
#include "mem/mem_req.hh"
#include "sim/eventq.hh"
class ExecContext;
template <class Impl>
class OzoneThreadState;
template <class Impl>
class BackEnd
{
public:
typedef OzoneThreadState<Impl> Thread;
typedef typename Impl::Params Params;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::FrontEnd FrontEnd;
typedef typename Impl::FullCPU::CommStruct CommStruct;
struct SizeStruct {
int size;
};
typedef SizeStruct DispatchToIssue;
typedef SizeStruct IssueToExec;
typedef SizeStruct ExecToCommit;
typedef SizeStruct Writeback;
TimeBuffer<DispatchToIssue> d2i;
typename TimeBuffer<DispatchToIssue>::wire instsToDispatch;
TimeBuffer<IssueToExec> i2e;
typename TimeBuffer<IssueToExec>::wire instsToExecute;
TimeBuffer<ExecToCommit> e2c;
TimeBuffer<Writeback> numInstsToWB;
TimeBuffer<CommStruct> *comm;
typename TimeBuffer<CommStruct>::wire toIEW;
typename TimeBuffer<CommStruct>::wire fromCommit;
class InstQueue {
enum queue {
NonSpec,
IQ,
ToBeScheduled,
ReadyList,
ReplayList
};
struct pqCompare {
bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
{
return lhs->seqNum > rhs->seqNum;
}
};
public:
InstQueue(Params *params);
std::string name() const;
void regStats();
void setIssueExecQueue(TimeBuffer<IssueToExec> *i2e_queue);
void setBE(BackEnd *_be) { be = _be; }
void insert(DynInstPtr &inst);
void scheduleReadyInsts();
void scheduleNonSpec(const InstSeqNum &sn);
DynInstPtr getReadyInst();
void commit(const InstSeqNum &sn) {}
void squash(const InstSeqNum &sn);
int wakeDependents(DynInstPtr &inst);
/** Tells memory dependence unit that a memory instruction needs to be
* rescheduled. It will re-execute once replayMemInst() is called.
*/
void rescheduleMemInst(DynInstPtr &inst);
/** Re-executes all rescheduled memory instructions. */
void replayMemInst(DynInstPtr &inst);
/** Completes memory instruction. */
void completeMemInst(DynInstPtr &inst);
void violation(DynInstPtr &inst, DynInstPtr &violation) { }
bool isFull() { return numInsts >= size; }
void dumpInsts();
private:
bool find(queue q, typename std::list<DynInstPtr>::iterator it);
BackEnd *be;
TimeBuffer<IssueToExec> *i2e;
typename TimeBuffer<IssueToExec>::wire numIssued;
typedef typename std::list<DynInstPtr> InstList;
typedef typename std::list<DynInstPtr>::iterator InstListIt;
typedef typename std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare> ReadyInstQueue;
// Not sure I need the IQ list; it just needs to be a count.
InstList iq;
InstList toBeScheduled;
InstList readyList;
InstList nonSpec;
InstList replayList;
ReadyInstQueue readyQueue;
int size;
int numInsts;
int width;
Stats::VectorDistribution<> occ_dist;
Stats::Vector<> inst_count;
Stats::Vector<> peak_inst_count;
Stats::Scalar<> empty_count;
Stats::Scalar<> current_count;
Stats::Scalar<> fullCount;
Stats::Formula occ_rate;
Stats::Formula avg_residency;
Stats::Formula empty_rate;
Stats::Formula full_rate;
};
/** LdWriteback event for a load completion. */
class LdWritebackEvent : public Event {
private:
/** Instruction that is writing back data to the register file. */
DynInstPtr inst;
/** Pointer to IEW stage. */
BackEnd *be;
public:
/** Constructs a load writeback event. */
LdWritebackEvent(DynInstPtr &_inst, BackEnd *be);
/** Processes writeback event. */
virtual void process();
/** Returns the description of the writeback event. */
virtual const char *description();
};
BackEnd(Params *params);
std::string name() const;
void regStats();
void setCPU(FullCPU *cpu_ptr)
{ cpu = cpu_ptr; }
void setFrontEnd(FrontEnd *front_end_ptr)
{ frontEnd = front_end_ptr; }
void setXC(ExecContext *xc_ptr)
{ xc = xc_ptr; }
void setThreadState(Thread *thread_ptr)
{ thread = thread_ptr; }
void setCommBuffer(TimeBuffer<CommStruct> *_comm);
void tick();
void squash();
void squashFromXC();
bool xcSquash;
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx);
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx);
Addr readCommitPC() { return commitPC; }
Addr commitPC;
bool robEmpty() { return instList.empty(); }
bool isFull() { return numInsts >= numROBEntries; }
bool isBlocked() { return status == Blocked || dispatchStatus == Blocked; }
/** Tells memory dependence unit that a memory instruction needs to be
* rescheduled. It will re-execute once replayMemInst() is called.
*/
void rescheduleMemInst(DynInstPtr &inst)
{ IQ.rescheduleMemInst(inst); }
/** Re-executes all rescheduled memory instructions. */
void replayMemInst(DynInstPtr &inst)
{ IQ.replayMemInst(inst); }
/** Completes memory instruction. */
void completeMemInst(DynInstPtr &inst)
{ IQ.completeMemInst(inst); }
void fetchFault(Fault &fault);
private:
void updateStructures();
void dispatchInsts();
void dispatchStall();
void checkDispatchStatus();
void scheduleReadyInsts();
void executeInsts();
void commitInsts();
void addToIQ(DynInstPtr &inst);
void addToLSQ(DynInstPtr &inst);
void instToCommit(DynInstPtr &inst);
void writebackInsts();
bool commitInst(int inst_num);
void squash(const InstSeqNum &sn);
void squashDueToBranch(DynInstPtr &inst);
void squashDueToMemBlocked(DynInstPtr &inst);
void updateExeInstStats(DynInstPtr &inst);
void updateComInstStats(DynInstPtr &inst);
public:
FullCPU *cpu;
FrontEnd *frontEnd;
ExecContext *xc;
Thread *thread;
enum Status {
Running,
Idle,
DcacheMissStall,
DcacheMissComplete,
Blocked
};
Status status;
Status dispatchStatus;
Counter funcExeInst;
private:
// typedef typename Impl::InstQueue InstQueue;
InstQueue IQ;
typedef typename Impl::LdstQueue LdstQueue;
LdstQueue LSQ;
public:
RenameTable<Impl> commitRenameTable;
RenameTable<Impl> renameTable;
private:
class DCacheCompletionEvent : public Event
{
private:
BackEnd *be;
public:
DCacheCompletionEvent(BackEnd *_be);
virtual void process();
virtual const char *description();
};
friend class DCacheCompletionEvent;
DCacheCompletionEvent cacheCompletionEvent;
MemInterface *dcacheInterface;
MemReqPtr memReq;
// General back end width. Used if the more specific isn't given.
int width;
// Dispatch width.
int dispatchWidth;
int numDispatchEntries;
int dispatchSize;
int issueWidth;
// Writeback width
int wbWidth;
// Commit width
int commitWidth;
/** Index into queue of instructions being written back. */
unsigned wbNumInst;
/** Cycle number within the queue of instructions being written
* back. Used in case there are too many instructions writing
* back at the current cycle and writesbacks need to be scheduled
* for the future. See comments in instToCommit().
*/
unsigned wbCycle;
int numROBEntries;
int numInsts;
private:
typedef typename std::list<DynInstPtr>::iterator InstListIt;
std::list<DynInstPtr> instList;
std::list<DynInstPtr> dispatch;
std::list<DynInstPtr> writeback;
int latency;
int squashLatency;
bool exactFullStall;
bool fetchRedirect[Impl::MaxThreads];
// number of cycles stalled for D-cache misses
/* Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
*/
Stats::Vector<> rob_cap_events;
Stats::Vector<> rob_cap_inst_count;
Stats::Vector<> iq_cap_events;
Stats::Vector<> iq_cap_inst_count;
// total number of instructions executed
Stats::Vector<> exe_inst;
Stats::Vector<> exe_swp;
Stats::Vector<> exe_nop;
Stats::Vector<> exe_refs;
Stats::Vector<> exe_loads;
Stats::Vector<> exe_branches;
Stats::Vector<> issued_ops;
// total number of loads forwaded from LSQ stores
Stats::Vector<> lsq_forw_loads;
// total number of loads ignored due to invalid addresses
Stats::Vector<> inv_addr_loads;
// total number of software prefetches ignored due to invalid addresses
Stats::Vector<> inv_addr_swpfs;
// ready loads blocked due to memory disambiguation
Stats::Vector<> lsq_blocked_loads;
Stats::Scalar<> lsqInversion;
Stats::Vector<> n_issued_dist;
Stats::VectorDistribution<> issue_delay_dist;
Stats::VectorDistribution<> queue_res_dist;
/*
Stats::Vector<> stat_fu_busy;
Stats::Vector2d<> stat_fuBusy;
Stats::Vector<> dist_unissued;
Stats::Vector2d<> stat_issued_inst_type;
Stats::Formula misspec_cnt;
Stats::Formula misspec_ipc;
Stats::Formula issue_rate;
Stats::Formula issue_stores;
Stats::Formula issue_op_rate;
Stats::Formula fu_busy_rate;
Stats::Formula commit_stores;
Stats::Formula commit_ipc;
Stats::Formula commit_ipb;
Stats::Formula lsq_inv_rate;
*/
Stats::Vector<> writeback_count;
Stats::Vector<> producer_inst;
Stats::Vector<> consumer_inst;
Stats::Vector<> wb_penalized;
Stats::Formula wb_rate;
Stats::Formula wb_fanout;
Stats::Formula wb_penalized_rate;
// total number of instructions committed
Stats::Vector<> stat_com_inst;
Stats::Vector<> stat_com_swp;
Stats::Vector<> stat_com_refs;
Stats::Vector<> stat_com_loads;
Stats::Vector<> stat_com_membars;
Stats::Vector<> stat_com_branches;
Stats::Distribution<> n_committed_dist;
Stats::Scalar<> commit_eligible_samples;
Stats::Vector<> commit_eligible;
Stats::Scalar<> ROB_fcount;
Stats::Formula ROB_full_rate;
Stats::Vector<> ROB_count; // cumulative ROB occupancy
Stats::Formula ROB_occ_rate;
Stats::VectorDistribution<> ROB_occ_dist;
public:
void dumpInsts();
};
template <class Impl>
template <class T>
Fault
BackEnd<Impl>::read(MemReqPtr &req, T &data, int load_idx)
{
/* memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = cpu->translateDataReadReq(memReq);
// if we have a cache, do cache access too
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
// Fix this hack for keeping funcExeInst correct with loads that
// are executed twice.
--funcExeInst;
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
// status = DcacheMissStall;
DPRINTF(OzoneCPU, "Dcache miss stall!\n");
} else {
// do functional access
fault = thread->mem->read(memReq, data);
}
}
*/
/*
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Read");
*/
return LSQ.read(req, data, load_idx);
}
template <class Impl>
template <class T>
Fault
BackEnd<Impl>::write(MemReqPtr &req, T &data, int store_idx)
{
/*
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = cpu->translateDataWriteReq(memReq);
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Write;
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents()) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
// status = DcacheMissStall;
DPRINTF(OzoneCPU, "Dcache miss stall!\n");
}
}
if (res && (fault == NoFault))
*res = memReq->result;
*/
/*
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Write");
*/
return LSQ.write(req, data, store_idx);
}
#endif // __CPU_OZONE_BACK_END_HH__

1853
cpu/ozone/back_end_impl.hh Normal file

File diff suppressed because it is too large Load diff

View file

@ -26,8 +26,9 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/ooo_cpu/ooo_cpu_impl.hh"
#include "cpu/ooo_cpu/ooo_dyn_inst.hh"
#include "cpu/ooo_cpu/ooo_impl.hh"
#include "cpu/ozone/cpu_impl.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
template class OoOCPU<OoOImpl>;
template class OzoneCPU<SimpleImpl>;
template class OzoneCPU<OzoneImpl>;

View file

@ -26,15 +26,19 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OOO_CPU_OOO_CPU_HH__
#define __CPU_OOO_CPU_OOO_CPU_HH__
#ifndef __CPU_OZONE_CPU_HH__
#define __CPU_OZONE_CPU_HH__
#include <set>
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "encumbered/cpu/full/fu_pool.hh"
#include "cpu/ooo_cpu/ea_list.hh"
#include "cpu/inst_seq.hh"
#include "cpu/ozone/rename_table.hh"
#include "cpu/ozone/thread_state.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "mem/mem_interface.hh"
@ -42,16 +46,19 @@
// forward declarations
#if FULL_SYSTEM
class Processor;
#include "arch/alpha/tlb.hh"
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class MemoryController;
class RemoteGDB;
class GDBListener;
#else
class PageTable;
class Process;
#endif // FULL_SYSTEM
@ -72,23 +79,180 @@ namespace Trace {
*/
template <class Impl>
class OoOCPU : public BaseCPU
class OzoneCPU : public BaseCPU
{
private:
typedef typename Impl::FrontEnd FrontEnd;
typedef typename Impl::BackEnd BackEnd;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef TheISA::MiscReg MiscReg;
public:
class OzoneXC : public ExecContext {
public:
OzoneCPU<Impl> *cpu;
OzoneThreadState<Impl> *thread;
BaseCPU *getCpuPtr();
void setCpuId(int id);
int readCpuId() { return thread->cpuId; }
FunctionalMemory *getMemPtr() { return thread->mem; }
#if FULL_SYSTEM
System *getSystemPtr() { return cpu->system; }
PhysicalMemory *getPhysMemPtr() { return cpu->physmem; }
AlphaITB *getITBPtr() { return cpu->itb; }
AlphaDTB * getDTBPtr() { return cpu->dtb; }
#else
Process *getProcessPtr() { return thread->process; }
#endif
Status status() const { return thread->_status; }
void setStatus(Status new_status);
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
#if FULL_SYSTEM
void dumpFuncProfile();
#endif
void takeOverFrom(ExecContext *old_context);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
Event *getQuiesceEvent();
Tick readLastActivate();
Tick readLastSuspend();
void profileClear();
void profileSample();
#endif
int getThreadNum();
// Also somewhat obnoxious. Really only used for the TLB fault.
TheISA::MachInst getInst();
void copyArchRegs(ExecContext *xc);
void clearArchRegs();
uint64_t readIntReg(int reg_idx);
float readFloatRegSingle(int reg_idx);
double readFloatRegDouble(int reg_idx);
uint64_t readFloatRegInt(int reg_idx);
void setIntReg(int reg_idx, uint64_t val);
void setFloatRegSingle(int reg_idx, float val);
void setFloatRegDouble(int reg_idx, double val);
void setFloatRegInt(int reg_idx, uint64_t val);
uint64_t readPC() { return thread->PC; }
void setPC(Addr val);
uint64_t readNextPC() { return thread->nextPC; }
void setNextPC(Addr val);
public:
// ISA stuff:
MiscReg readMiscReg(int misc_reg);
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault);
Fault setMiscReg(int misc_reg, const MiscReg &val);
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val);
unsigned readStCondFailures()
{ return thread->storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
#if FULL_SYSTEM
bool inPalMode() { return cpu->inPalMode(); }
#endif
bool misspeculating() { return false; }
#if !FULL_SYSTEM
TheISA::IntReg getSyscallArg(int i)
{ return thread->renameTable[TheISA::ArgumentReg0 + i]->readIntResult(); }
// used to shift args for indirect syscall
void setSyscallArg(int i, TheISA::IntReg val)
{ thread->renameTable[TheISA::ArgumentReg0 + i]->setIntResult(i); }
void setSyscallReturn(SyscallReturn return_value)
{ cpu->setSyscallReturn(return_value, thread->tid); }
Counter readFuncExeInst() { return thread->funcExeInst; }
void setFuncExeInst(Counter new_val)
{ thread->funcExeInst = new_val; }
#endif
};
// execution context proxy
OzoneXC xcProxy;
typedef OzoneThreadState<Impl> ImplState;
private:
OzoneThreadState<Impl> thread;
/*
// Squash event for when the XC needs to squash all inflight instructions.
struct XCSquashEvent : public Event
{
void process();
const char *description();
};
*/
public:
// main simulation loop (one cycle)
void tick();
std::set<InstSeqNum> snList;
private:
struct TickEvent : public Event
{
OoOCPU *cpu;
OzoneCPU *cpu;
int width;
TickEvent(OoOCPU *c, int w);
TickEvent(OzoneCPU *c, int w);
void process();
const char *description();
};
@ -122,16 +286,14 @@ class OoOCPU : public BaseCPU
enum Status {
Running,
Idle,
IcacheMiss,
IcacheMissComplete,
DcacheMissStall,
SwitchedOut
};
private:
Status _status;
public:
bool checkInterrupts;
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
@ -142,33 +304,24 @@ class OoOCPU : public BaseCPU
}
};
struct Params : public BaseCPU::Params
{
MemInterface *icache_interface;
MemInterface *dcache_interface;
int width;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
FunctionalMemory *mem;
#else
Process *process;
#endif
int issueWidth;
};
typedef typename Impl::Params Params;
OoOCPU(Params *params);
OzoneCPU(Params *params);
virtual ~OoOCPU();
virtual ~OzoneCPU();
void init();
private:
void copyFromXC();
public:
// execution context
ExecContext *xc;
BaseCPU *getCpuPtr() { return this; }
void setCpuId(int id) { cpuId = id; }
int readCpuId() { return cpuId; }
// FunctionalMemory *getMemPtr() { return mem; }
int cpuId;
void switchOut();
void takeOverFrom(BaseCPU *oldCPU);
@ -177,6 +330,16 @@ class OoOCPU : public BaseCPU
Addr dbg_vtophys(Addr addr);
bool interval_stats;
AlphaITB *itb;
AlphaDTB *dtb;
System *system;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memctrl;
PhysicalMemory *physmem;
#endif
// L1 instruction cache
@ -185,54 +348,18 @@ class OoOCPU : public BaseCPU
// L1 data cache
MemInterface *dcacheInterface;
FuncUnitPool *fuPool;
#if !FULL_SYSTEM
PageTable *pTable;
#endif
// Refcounted pointer to the one memory request.
MemReqPtr cacheMemReq;
class ICacheCompletionEvent : public Event
{
private:
OoOCPU *cpu;
public:
ICacheCompletionEvent(OoOCPU *_cpu);
virtual void process();
virtual const char *description();
};
// Will need to create a cache completion event upon any memory miss.
ICacheCompletionEvent iCacheCompletionEvent;
class DCacheCompletionEvent;
typedef typename
std::list<DCacheCompletionEvent>::iterator DCacheCompEventIt;
class DCacheCompletionEvent : public Event
{
private:
OoOCPU *cpu;
DynInstPtr inst;
DCacheCompEventIt dcceIt;
public:
DCacheCompletionEvent(OoOCPU *_cpu, DynInstPtr &_inst,
DCacheCompEventIt &_dcceIt);
virtual void process();
virtual const char *description();
};
friend class DCacheCompletionEvent;
protected:
std::list<DCacheCompletionEvent> dCacheCompList;
DCacheCompEventIt dcceIt;
FrontEnd *frontEnd;
BackEnd *backEnd;
private:
Status status() const { return _status; }
void setStatus(Status new_status) { _status = new_status; }
// Not sure what an activate() call on the CPU's proxy XC would mean...
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
@ -244,17 +371,19 @@ class OoOCPU : public BaseCPU
virtual void resetStats();
// number of simulated instructions
public:
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
// Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
private:
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
@ -263,27 +392,15 @@ class OoOCPU : public BaseCPU
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache misses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for D-cache misses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
void processICacheCompletion();
public:
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
#if FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
int getInstAsid() { return xc->regs.instAsid(); }
int getDataAsid() { return xc->regs.dataAsid(); }
Fault translateInstReq(MemReqPtr &req)
{
@ -302,13 +419,13 @@ class OoOCPU : public BaseCPU
#else
bool validInstAddr(Addr addr)
{ return xc->validInstAddr(addr); }
{ return true; }
bool validDataAddr(Addr addr)
{ return xc->validDataAddr(addr); }
{ return true; }
int getInstAsid() { return xc->asid; }
int getDataAsid() { return xc->asid; }
int getInstAsid() { return thread.asid; }
int getDataAsid() { return thread.asid; }
Fault dummyTranslation(MemReqPtr &req)
{
@ -321,27 +438,38 @@ class OoOCPU : public BaseCPU
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
/** Translates instruction requestion in syscall emulation mode. */
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data read request in syscall emulation mode. */
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
/** Translates data write request in syscall emulation mode. */
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
/** CPU read function, forwards read to LSQ. */
template <class T>
Fault read(Addr addr, T &data, unsigned flags, DynInstPtr inst);
Fault read(MemReqPtr &req, T &data, int load_idx)
{
return backEnd->read(req, data, load_idx);
}
/** CPU write function, forwards write to LSQ. */
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res, DynInstPtr inst);
Fault write(MemReqPtr &req, T &data, int store_idx)
{
return backEnd->write(req, data, store_idx);
}
void prefetch(Addr addr, unsigned flags)
{
@ -357,270 +485,38 @@ class OoOCPU : public BaseCPU
Fault copy(Addr dest);
private:
bool executeInst(DynInstPtr &inst);
void renameInst(DynInstPtr &inst);
void addInst(DynInstPtr &inst);
void commitHeadInst();
bool getOneInst();
Fault fetchCacheLine();
InstSeqNum getAndIncrementInstSeq();
bool ambigMemAddr;
private:
InstSeqNum globalSeqNum;
DynInstPtr renameTable[TheISA::TotalNumRegs];
DynInstPtr commitTable[TheISA::TotalNumRegs];
// Might need a table of the shadow registers as well.
#if FULL_SYSTEM
DynInstPtr palShadowTable[TheISA::NumIntRegs];
#endif
public:
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
void squashFromXC();
// In the OoO case these shouldn't read from the XC but rather from the
// rename table of DynInsts. Also these likely shouldn't be called very
// often, other than when adding things into the xc during say a syscall.
uint64_t readIntReg(StaticInst *si, int idx)
{
return xc->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegInt(reg_idx);
}
void setIntReg(StaticInst *si, int idx, uint64_t val)
{
xc->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegSingle(StaticInst *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegSingle(reg_idx, val);
}
void setFloatRegDouble(StaticInst *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegDouble(reg_idx, val);
}
void setFloatRegInt(StaticInst *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegInt(reg_idx, val);
}
uint64_t readPC() { return PC; }
void setNextPC(Addr val) { nextPC = val; }
private:
Addr PC;
Addr nextPC;
unsigned issueWidth;
bool fetchRedirExcp;
bool fetchRedirBranch;
/** Mask to get a cache block's address. */
Addr cacheBlkMask;
unsigned cacheBlkSize;
Addr cacheBlkPC;
/** The cache line being fetched. */
uint8_t *cacheData;
protected:
bool cacheBlkValid;
private:
// Align an address (typically a PC) to the start of an I-cache block.
// We fold in the PISA 64- to 32-bit conversion here as well.
Addr icacheBlockAlignPC(Addr addr)
{
addr = TheISA::realPCToFetchPC(addr);
return (addr & ~(cacheBlkMask));
}
unsigned instSize;
// ROB tracking stuff.
DynInstPtr robHeadPtr;
DynInstPtr robTailPtr;
unsigned robSize;
unsigned robInsts;
// List of outstanding EA instructions.
protected:
EAList eaList;
public:
void branchToTarget(Addr val)
{
if (!fetchRedirExcp) {
fetchRedirBranch = true;
PC = val;
}
}
// ISA stuff:
uint64_t readUniq() { return xc->readUniq(); }
void setUniq(uint64_t val) { xc->setUniq(val); }
uint64_t readFpcr() { return xc->readFpcr(); }
void setFpcr(uint64_t val) { xc->setFpcr(val); }
// @todo: This can be a useful debug function. Implement it.
void dumpInsts() { frontEnd->dumpInsts(); }
#if FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
Fault hwrei() { return xc->hwrei(); }
int readIntrFlag() { return xc->readIntrFlag(); }
void setIntrFlag(int val) { xc->setIntrFlag(val); }
bool inPalMode() { return xc->inPalMode(); }
void trap(Fault fault) { fault->invoke(xc); }
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
Fault hwrei();
int readIntrFlag() { return thread.regs.intrflag; }
void setIntrFlag(int val) { thread.regs.intrflag = val; }
bool inPalMode() { return AlphaISA::PcPAL(thread.PC); }
bool inPalMode(Addr pc) { return AlphaISA::PcPAL(pc); }
bool simPalCheck(int palFunc);
#else
void syscall() { xc->syscall(); }
void syscall();
void setSyscallReturn(SyscallReturn return_value, int tid);
#endif
ExecContext *xcBase() { return xc; }
ExecContext *xcBase() { return &xcProxy; }
bool decoupledFrontEnd;
struct CommStruct {
InstSeqNum doneSeqNum;
InstSeqNum nonSpecSeqNum;
bool uncached;
unsigned lqIdx;
bool stall;
};
TimeBuffer<CommStruct> comm;
};
// precise architected memory state accessor macros
template <class Impl>
template <class T>
Fault
OoOCPU<Impl>::read(Addr addr, T &data, unsigned flags, DynInstPtr inst)
{
MemReqPtr readReq = new MemReq();
readReq->xc = xc;
readReq->asid = 0;
readReq->data = new uint8_t[64];
readReq->reset(addr, sizeof(T), flags);
// translate to physical address - This might be an ISA impl call
Fault fault = translateDataReadReq(readReq);
// do functional access
if (fault == NoFault)
fault = xc->mem->read(readReq, data);
#if 0
if (traceData) {
traceData->setAddr(addr);
if (fault == NoFault)
traceData->setData(data);
}
#endif
// if we have a cache, do cache access too
if (fault == NoFault && dcacheInterface) {
readReq->cmd = Read;
readReq->completionEvent = NULL;
readReq->time = curTick;
/*MemAccessResult result = */dcacheInterface->access(readReq);
if (dcacheInterface->doEvents()) {
readReq->completionEvent = new DCacheCompletionEvent(this, inst,
dcceIt);
}
}
if (!dcacheInterface && (readReq->flags & UNCACHEABLE))
recordEvent("Uncached Read");
return fault;
}
template <class Impl>
template <class T>
Fault
OoOCPU<Impl>::write(T data, Addr addr, unsigned flags,
uint64_t *res, DynInstPtr inst)
{
MemReqPtr writeReq = new MemReq();
writeReq->xc = xc;
writeReq->asid = 0;
writeReq->data = new uint8_t[64];
#if 0
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
#endif
writeReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = translateDataWriteReq(writeReq);
// do functional access
if (fault == NoFault)
fault = xc->write(writeReq, data);
if (fault == NoFault && dcacheInterface) {
writeReq->cmd = Write;
memcpy(writeReq->data,(uint8_t *)&data,writeReq->size);
writeReq->completionEvent = NULL;
writeReq->time = curTick;
/*MemAccessResult result = */dcacheInterface->access(writeReq);
if (dcacheInterface->doEvents()) {
writeReq->completionEvent = new DCacheCompletionEvent(this, inst,
dcceIt);
}
}
if (res && (fault == NoFault))
*res = writeReq->result;
if (!dcacheInterface && (writeReq->flags & UNCACHEABLE))
recordEvent("Uncached Write");
return fault;
}
#endif // __CPU_OOO_CPU_OOO_CPU_HH__
#endif // __CPU_OZONE_CPU_HH__

818
cpu/ozone/cpu_builder.cc Normal file
View file

@ -0,0 +1,818 @@
#include <string>
#include "cpu/inst_seq.hh"
#include "cpu/ozone/cpu.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
#include "cpu/ozone/simple_params.hh"
#include "mem/cache/base_cache.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/sim_object.hh"
class DerivOzoneCPU : public OzoneCPU<OzoneImpl>
{
public:
DerivOzoneCPU(SimpleParams *p)
: OzoneCPU<OzoneImpl>(p)
{ }
};
class SimpleOzoneCPU : public OzoneCPU<SimpleImpl>
{
public:
SimpleOzoneCPU(SimpleParams *p)
: OzoneCPU<SimpleImpl>(p)
{ }
};
////////////////////////////////////////////////////////////////////////
//
// OzoneCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(DerivOzoneCPU)
Param<int> clock;
Param<int> numThreads;
#if FULL_SYSTEM
SimObjectParam<System *> system;
Param<int> cpu_id;
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
#else
SimObjectVectorParam<Process *> workload;
//SimObjectParam<PageTable *> page_table;
#endif // FULL_SYSTEM
SimObjectParam<FunctionalMemory *> mem;
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<BaseCache *> icache;
SimObjectParam<BaseCache *> dcache;
Param<unsigned> cachePorts;
Param<unsigned> width;
Param<unsigned> frontEndWidth;
Param<unsigned> backEndWidth;
Param<unsigned> backEndSquashLatency;
Param<unsigned> backEndLatency;
Param<unsigned> maxInstBufferSize;
Param<unsigned> numPhysicalRegs;
Param<unsigned> decodeToFetchDelay;
Param<unsigned> renameToFetchDelay;
Param<unsigned> iewToFetchDelay;
Param<unsigned> commitToFetchDelay;
Param<unsigned> fetchWidth;
Param<unsigned> renameToDecodeDelay;
Param<unsigned> iewToDecodeDelay;
Param<unsigned> commitToDecodeDelay;
Param<unsigned> fetchToDecodeDelay;
Param<unsigned> decodeWidth;
Param<unsigned> iewToRenameDelay;
Param<unsigned> commitToRenameDelay;
Param<unsigned> decodeToRenameDelay;
Param<unsigned> renameWidth;
Param<unsigned> commitToIEWDelay;
Param<unsigned> renameToIEWDelay;
Param<unsigned> issueToExecuteDelay;
Param<unsigned> issueWidth;
Param<unsigned> executeWidth;
Param<unsigned> executeIntWidth;
Param<unsigned> executeFloatWidth;
Param<unsigned> executeBranchWidth;
Param<unsigned> executeMemoryWidth;
Param<unsigned> iewToCommitDelay;
Param<unsigned> renameToROBDelay;
Param<unsigned> commitWidth;
Param<unsigned> squashWidth;
Param<unsigned> localPredictorSize;
Param<unsigned> localCtrBits;
Param<unsigned> localHistoryTableSize;
Param<unsigned> localHistoryBits;
Param<unsigned> globalPredictorSize;
Param<unsigned> globalCtrBits;
Param<unsigned> globalHistoryBits;
Param<unsigned> choicePredictorSize;
Param<unsigned> choiceCtrBits;
Param<unsigned> BTBEntries;
Param<unsigned> BTBTagSize;
Param<unsigned> RASSize;
Param<unsigned> LQEntries;
Param<unsigned> SQEntries;
Param<unsigned> LFSTSize;
Param<unsigned> SSITSize;
Param<unsigned> numPhysIntRegs;
Param<unsigned> numPhysFloatRegs;
Param<unsigned> numIQEntries;
Param<unsigned> numROBEntries;
Param<bool> decoupledFrontEnd;
Param<int> dispatchWidth;
Param<int> wbWidth;
Param<unsigned> smtNumFetchingThreads;
Param<std::string> smtFetchPolicy;
Param<std::string> smtLSQPolicy;
Param<unsigned> smtLSQThreshold;
Param<std::string> smtIQPolicy;
Param<unsigned> smtIQThreshold;
Param<std::string> smtROBPolicy;
Param<unsigned> smtROBThreshold;
Param<std::string> smtCommitPolicy;
Param<unsigned> instShiftAmt;
Param<bool> defer_registration;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(DerivOzoneCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(DerivOzoneCPU)
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(numThreads, "number of HW thread contexts"),
#if FULL_SYSTEM
INIT_PARAM(system, "System object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(itb, "Instruction translation buffer"),
INIT_PARAM(dtb, "Data translation buffer"),
#else
INIT_PARAM(workload, "Processes to run"),
// INIT_PARAM(page_table, "Page table"),
#endif // FULL_SYSTEM
INIT_PARAM_DFLT(mem, "Memory", NULL),
INIT_PARAM_DFLT(max_insts_any_thread,
"Terminate when any thread reaches this inst count",
0),
INIT_PARAM_DFLT(max_insts_all_threads,
"Terminate when all threads have reached"
"this inst count",
0),
INIT_PARAM_DFLT(max_loads_any_thread,
"Terminate when any thread reaches this load count",
0),
INIT_PARAM_DFLT(max_loads_all_threads,
"Terminate when all threads have reached this load"
"count",
0),
INIT_PARAM_DFLT(icache, "L1 instruction cache", NULL),
INIT_PARAM_DFLT(dcache, "L1 data cache", NULL),
INIT_PARAM_DFLT(cachePorts, "Cache Ports", 200),
INIT_PARAM_DFLT(width, "Width", 1),
INIT_PARAM_DFLT(frontEndWidth, "Front end width", 1),
INIT_PARAM_DFLT(backEndWidth, "Back end width", 1),
INIT_PARAM_DFLT(backEndSquashLatency, "Back end squash latency", 1),
INIT_PARAM_DFLT(backEndLatency, "Back end latency", 1),
INIT_PARAM_DFLT(maxInstBufferSize, "Maximum instruction buffer size", 16),
INIT_PARAM(numPhysicalRegs, "Number of physical registers"),
INIT_PARAM(decodeToFetchDelay, "Decode to fetch delay"),
INIT_PARAM(renameToFetchDelay, "Rename to fetch delay"),
INIT_PARAM(iewToFetchDelay, "Issue/Execute/Writeback to fetch"
"delay"),
INIT_PARAM(commitToFetchDelay, "Commit to fetch delay"),
INIT_PARAM(fetchWidth, "Fetch width"),
INIT_PARAM(renameToDecodeDelay, "Rename to decode delay"),
INIT_PARAM(iewToDecodeDelay, "Issue/Execute/Writeback to decode"
"delay"),
INIT_PARAM(commitToDecodeDelay, "Commit to decode delay"),
INIT_PARAM(fetchToDecodeDelay, "Fetch to decode delay"),
INIT_PARAM(decodeWidth, "Decode width"),
INIT_PARAM(iewToRenameDelay, "Issue/Execute/Writeback to rename"
"delay"),
INIT_PARAM(commitToRenameDelay, "Commit to rename delay"),
INIT_PARAM(decodeToRenameDelay, "Decode to rename delay"),
INIT_PARAM(renameWidth, "Rename width"),
INIT_PARAM(commitToIEWDelay, "Commit to "
"Issue/Execute/Writeback delay"),
INIT_PARAM(renameToIEWDelay, "Rename to "
"Issue/Execute/Writeback delay"),
INIT_PARAM(issueToExecuteDelay, "Issue to execute delay (internal"
"to the IEW stage)"),
INIT_PARAM(issueWidth, "Issue width"),
INIT_PARAM(executeWidth, "Execute width"),
INIT_PARAM(executeIntWidth, "Integer execute width"),
INIT_PARAM(executeFloatWidth, "Floating point execute width"),
INIT_PARAM(executeBranchWidth, "Branch execute width"),
INIT_PARAM(executeMemoryWidth, "Memory execute width"),
INIT_PARAM(iewToCommitDelay, "Issue/Execute/Writeback to commit "
"delay"),
INIT_PARAM(renameToROBDelay, "Rename to reorder buffer delay"),
INIT_PARAM(commitWidth, "Commit width"),
INIT_PARAM(squashWidth, "Squash width"),
INIT_PARAM(localPredictorSize, "Size of local predictor"),
INIT_PARAM(localCtrBits, "Bits per counter"),
INIT_PARAM(localHistoryTableSize, "Size of local history table"),
INIT_PARAM(localHistoryBits, "Bits for the local history"),
INIT_PARAM(globalPredictorSize, "Size of global predictor"),
INIT_PARAM(globalCtrBits, "Bits per counter"),
INIT_PARAM(globalHistoryBits, "Bits of history"),
INIT_PARAM(choicePredictorSize, "Size of choice predictor"),
INIT_PARAM(choiceCtrBits, "Bits of choice counters"),
INIT_PARAM(BTBEntries, "Number of BTB entries"),
INIT_PARAM(BTBTagSize, "Size of the BTB tags, in bits"),
INIT_PARAM(RASSize, "RAS size"),
INIT_PARAM(LQEntries, "Number of load queue entries"),
INIT_PARAM(SQEntries, "Number of store queue entries"),
INIT_PARAM(LFSTSize, "Last fetched store table size"),
INIT_PARAM(SSITSize, "Store set ID table size"),
INIT_PARAM(numPhysIntRegs, "Number of physical integer registers"),
INIT_PARAM(numPhysFloatRegs, "Number of physical floating point "
"registers"),
INIT_PARAM(numIQEntries, "Number of instruction queue entries"),
INIT_PARAM(numROBEntries, "Number of reorder buffer entries"),
INIT_PARAM_DFLT(decoupledFrontEnd, "Decoupled front end", true),
INIT_PARAM_DFLT(dispatchWidth, "Dispatch width", 0),
INIT_PARAM_DFLT(wbWidth, "Writeback width", 0),
INIT_PARAM_DFLT(smtNumFetchingThreads, "SMT Number of Fetching Threads", 1),
INIT_PARAM_DFLT(smtFetchPolicy, "SMT Fetch Policy", "SingleThread"),
INIT_PARAM_DFLT(smtLSQPolicy, "SMT LSQ Sharing Policy", "Partitioned"),
INIT_PARAM_DFLT(smtLSQThreshold,"SMT LSQ Threshold", 100),
INIT_PARAM_DFLT(smtIQPolicy, "SMT IQ Policy", "Partitioned"),
INIT_PARAM_DFLT(smtIQThreshold, "SMT IQ Threshold", 100),
INIT_PARAM_DFLT(smtROBPolicy, "SMT ROB Sharing Policy", "Partitioned"),
INIT_PARAM_DFLT(smtROBThreshold,"SMT ROB Threshold", 100),
INIT_PARAM_DFLT(smtCommitPolicy,"SMT Commit Fetch Policy", "RoundRobin"),
INIT_PARAM(instShiftAmt, "Number of bits to shift instructions by"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(DerivOzoneCPU)
CREATE_SIM_OBJECT(DerivOzoneCPU)
{
DerivOzoneCPU *cpu;
#if FULL_SYSTEM
// Full-system only supports a single thread for the moment.
int actual_num_threads = 1;
#else
// In non-full-system mode, we infer the number of threads from
// the workload if it's not explicitly specified.
int actual_num_threads =
numThreads.isValid() ? numThreads : workload.size();
if (workload.size() == 0) {
fatal("Must specify at least one workload!");
}
#endif
SimpleParams *params = new SimpleParams;
params->clock = clock;
params->name = getInstanceName();
params->numberOfThreads = actual_num_threads;
#if FULL_SYSTEM
params->system = system;
params->cpu_id = cpu_id;
params->itb = itb;
params->dtb = dtb;
#else
params->workload = workload;
// params->pTable = page_table;
#endif // FULL_SYSTEM
params->mem = mem;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
//
// Caches
//
params->icacheInterface = icache ? icache->getInterface() : NULL;
params->dcacheInterface = dcache ? dcache->getInterface() : NULL;
params->cachePorts = cachePorts;
params->width = width;
params->frontEndWidth = frontEndWidth;
params->backEndWidth = backEndWidth;
params->backEndSquashLatency = backEndSquashLatency;
params->backEndLatency = backEndLatency;
params->maxInstBufferSize = maxInstBufferSize;
params->numPhysicalRegs = numPhysIntRegs + numPhysFloatRegs;
params->decodeToFetchDelay = decodeToFetchDelay;
params->renameToFetchDelay = renameToFetchDelay;
params->iewToFetchDelay = iewToFetchDelay;
params->commitToFetchDelay = commitToFetchDelay;
params->fetchWidth = fetchWidth;
params->renameToDecodeDelay = renameToDecodeDelay;
params->iewToDecodeDelay = iewToDecodeDelay;
params->commitToDecodeDelay = commitToDecodeDelay;
params->fetchToDecodeDelay = fetchToDecodeDelay;
params->decodeWidth = decodeWidth;
params->iewToRenameDelay = iewToRenameDelay;
params->commitToRenameDelay = commitToRenameDelay;
params->decodeToRenameDelay = decodeToRenameDelay;
params->renameWidth = renameWidth;
params->commitToIEWDelay = commitToIEWDelay;
params->renameToIEWDelay = renameToIEWDelay;
params->issueToExecuteDelay = issueToExecuteDelay;
params->issueWidth = issueWidth;
params->executeWidth = executeWidth;
params->executeIntWidth = executeIntWidth;
params->executeFloatWidth = executeFloatWidth;
params->executeBranchWidth = executeBranchWidth;
params->executeMemoryWidth = executeMemoryWidth;
params->iewToCommitDelay = iewToCommitDelay;
params->renameToROBDelay = renameToROBDelay;
params->commitWidth = commitWidth;
params->squashWidth = squashWidth;
params->localPredictorSize = localPredictorSize;
params->localCtrBits = localCtrBits;
params->localHistoryTableSize = localHistoryTableSize;
params->localHistoryBits = localHistoryBits;
params->globalPredictorSize = globalPredictorSize;
params->globalCtrBits = globalCtrBits;
params->globalHistoryBits = globalHistoryBits;
params->choicePredictorSize = choicePredictorSize;
params->choiceCtrBits = choiceCtrBits;
params->BTBEntries = BTBEntries;
params->BTBTagSize = BTBTagSize;
params->RASSize = RASSize;
params->LQEntries = LQEntries;
params->SQEntries = SQEntries;
params->SSITSize = SSITSize;
params->LFSTSize = LFSTSize;
params->numPhysIntRegs = numPhysIntRegs;
params->numPhysFloatRegs = numPhysFloatRegs;
params->numIQEntries = numIQEntries;
params->numROBEntries = numROBEntries;
params->decoupledFrontEnd = decoupledFrontEnd;
params->dispatchWidth = dispatchWidth;
params->wbWidth = wbWidth;
params->smtNumFetchingThreads = smtNumFetchingThreads;
params->smtFetchPolicy = smtFetchPolicy;
params->smtIQPolicy = smtIQPolicy;
params->smtLSQPolicy = smtLSQPolicy;
params->smtLSQThreshold = smtLSQThreshold;
params->smtROBPolicy = smtROBPolicy;
params->smtROBThreshold = smtROBThreshold;
params->smtCommitPolicy = smtCommitPolicy;
params->instShiftAmt = 2;
params->deferRegistration = defer_registration;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
cpu = new DerivOzoneCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("DerivOzoneCPU", DerivOzoneCPU)
////////////////////////////////////////////////////////////////////////
//
// OzoneCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleOzoneCPU)
Param<int> clock;
Param<int> numThreads;
#if FULL_SYSTEM
SimObjectParam<System *> system;
Param<int> cpu_id;
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
#else
SimObjectVectorParam<Process *> workload;
//SimObjectParam<PageTable *> page_table;
#endif // FULL_SYSTEM
SimObjectParam<FunctionalMemory *> mem;
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<BaseCache *> icache;
SimObjectParam<BaseCache *> dcache;
Param<unsigned> cachePorts;
Param<unsigned> width;
Param<unsigned> frontEndWidth;
Param<unsigned> backEndWidth;
Param<unsigned> backEndSquashLatency;
Param<unsigned> backEndLatency;
Param<unsigned> maxInstBufferSize;
Param<unsigned> numPhysicalRegs;
Param<unsigned> decodeToFetchDelay;
Param<unsigned> renameToFetchDelay;
Param<unsigned> iewToFetchDelay;
Param<unsigned> commitToFetchDelay;
Param<unsigned> fetchWidth;
Param<unsigned> renameToDecodeDelay;
Param<unsigned> iewToDecodeDelay;
Param<unsigned> commitToDecodeDelay;
Param<unsigned> fetchToDecodeDelay;
Param<unsigned> decodeWidth;
Param<unsigned> iewToRenameDelay;
Param<unsigned> commitToRenameDelay;
Param<unsigned> decodeToRenameDelay;
Param<unsigned> renameWidth;
Param<unsigned> commitToIEWDelay;
Param<unsigned> renameToIEWDelay;
Param<unsigned> issueToExecuteDelay;
Param<unsigned> issueWidth;
Param<unsigned> executeWidth;
Param<unsigned> executeIntWidth;
Param<unsigned> executeFloatWidth;
Param<unsigned> executeBranchWidth;
Param<unsigned> executeMemoryWidth;
Param<unsigned> iewToCommitDelay;
Param<unsigned> renameToROBDelay;
Param<unsigned> commitWidth;
Param<unsigned> squashWidth;
Param<unsigned> localPredictorSize;
Param<unsigned> localCtrBits;
Param<unsigned> localHistoryTableSize;
Param<unsigned> localHistoryBits;
Param<unsigned> globalPredictorSize;
Param<unsigned> globalCtrBits;
Param<unsigned> globalHistoryBits;
Param<unsigned> choicePredictorSize;
Param<unsigned> choiceCtrBits;
Param<unsigned> BTBEntries;
Param<unsigned> BTBTagSize;
Param<unsigned> RASSize;
Param<unsigned> LQEntries;
Param<unsigned> SQEntries;
Param<unsigned> LFSTSize;
Param<unsigned> SSITSize;
Param<unsigned> numPhysIntRegs;
Param<unsigned> numPhysFloatRegs;
Param<unsigned> numIQEntries;
Param<unsigned> numROBEntries;
Param<bool> decoupledFrontEnd;
Param<int> dispatchWidth;
Param<int> wbWidth;
Param<unsigned> smtNumFetchingThreads;
Param<std::string> smtFetchPolicy;
Param<std::string> smtLSQPolicy;
Param<unsigned> smtLSQThreshold;
Param<std::string> smtIQPolicy;
Param<unsigned> smtIQThreshold;
Param<std::string> smtROBPolicy;
Param<unsigned> smtROBThreshold;
Param<std::string> smtCommitPolicy;
Param<unsigned> instShiftAmt;
Param<bool> defer_registration;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(SimpleOzoneCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleOzoneCPU)
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(numThreads, "number of HW thread contexts"),
#if FULL_SYSTEM
INIT_PARAM(system, "System object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(itb, "Instruction translation buffer"),
INIT_PARAM(dtb, "Data translation buffer"),
#else
INIT_PARAM(workload, "Processes to run"),
// INIT_PARAM(page_table, "Page table"),
#endif // FULL_SYSTEM
INIT_PARAM_DFLT(mem, "Memory", NULL),
INIT_PARAM_DFLT(max_insts_any_thread,
"Terminate when any thread reaches this inst count",
0),
INIT_PARAM_DFLT(max_insts_all_threads,
"Terminate when all threads have reached"
"this inst count",
0),
INIT_PARAM_DFLT(max_loads_any_thread,
"Terminate when any thread reaches this load count",
0),
INIT_PARAM_DFLT(max_loads_all_threads,
"Terminate when all threads have reached this load"
"count",
0),
INIT_PARAM_DFLT(icache, "L1 instruction cache", NULL),
INIT_PARAM_DFLT(dcache, "L1 data cache", NULL),
INIT_PARAM_DFLT(cachePorts, "Cache Ports", 200),
INIT_PARAM_DFLT(width, "Width", 1),
INIT_PARAM_DFLT(frontEndWidth, "Front end width", 1),
INIT_PARAM_DFLT(backEndWidth, "Back end width", 1),
INIT_PARAM_DFLT(backEndSquashLatency, "Back end squash latency", 1),
INIT_PARAM_DFLT(backEndLatency, "Back end latency", 1),
INIT_PARAM_DFLT(maxInstBufferSize, "Maximum instruction buffer size", 16),
INIT_PARAM(numPhysicalRegs, "Number of physical registers"),
INIT_PARAM(decodeToFetchDelay, "Decode to fetch delay"),
INIT_PARAM(renameToFetchDelay, "Rename to fetch delay"),
INIT_PARAM(iewToFetchDelay, "Issue/Execute/Writeback to fetch"
"delay"),
INIT_PARAM(commitToFetchDelay, "Commit to fetch delay"),
INIT_PARAM(fetchWidth, "Fetch width"),
INIT_PARAM(renameToDecodeDelay, "Rename to decode delay"),
INIT_PARAM(iewToDecodeDelay, "Issue/Execute/Writeback to decode"
"delay"),
INIT_PARAM(commitToDecodeDelay, "Commit to decode delay"),
INIT_PARAM(fetchToDecodeDelay, "Fetch to decode delay"),
INIT_PARAM(decodeWidth, "Decode width"),
INIT_PARAM(iewToRenameDelay, "Issue/Execute/Writeback to rename"
"delay"),
INIT_PARAM(commitToRenameDelay, "Commit to rename delay"),
INIT_PARAM(decodeToRenameDelay, "Decode to rename delay"),
INIT_PARAM(renameWidth, "Rename width"),
INIT_PARAM(commitToIEWDelay, "Commit to "
"Issue/Execute/Writeback delay"),
INIT_PARAM(renameToIEWDelay, "Rename to "
"Issue/Execute/Writeback delay"),
INIT_PARAM(issueToExecuteDelay, "Issue to execute delay (internal"
"to the IEW stage)"),
INIT_PARAM(issueWidth, "Issue width"),
INIT_PARAM(executeWidth, "Execute width"),
INIT_PARAM(executeIntWidth, "Integer execute width"),
INIT_PARAM(executeFloatWidth, "Floating point execute width"),
INIT_PARAM(executeBranchWidth, "Branch execute width"),
INIT_PARAM(executeMemoryWidth, "Memory execute width"),
INIT_PARAM(iewToCommitDelay, "Issue/Execute/Writeback to commit "
"delay"),
INIT_PARAM(renameToROBDelay, "Rename to reorder buffer delay"),
INIT_PARAM(commitWidth, "Commit width"),
INIT_PARAM(squashWidth, "Squash width"),
INIT_PARAM(localPredictorSize, "Size of local predictor"),
INIT_PARAM(localCtrBits, "Bits per counter"),
INIT_PARAM(localHistoryTableSize, "Size of local history table"),
INIT_PARAM(localHistoryBits, "Bits for the local history"),
INIT_PARAM(globalPredictorSize, "Size of global predictor"),
INIT_PARAM(globalCtrBits, "Bits per counter"),
INIT_PARAM(globalHistoryBits, "Bits of history"),
INIT_PARAM(choicePredictorSize, "Size of choice predictor"),
INIT_PARAM(choiceCtrBits, "Bits of choice counters"),
INIT_PARAM(BTBEntries, "Number of BTB entries"),
INIT_PARAM(BTBTagSize, "Size of the BTB tags, in bits"),
INIT_PARAM(RASSize, "RAS size"),
INIT_PARAM(LQEntries, "Number of load queue entries"),
INIT_PARAM(SQEntries, "Number of store queue entries"),
INIT_PARAM(LFSTSize, "Last fetched store table size"),
INIT_PARAM(SSITSize, "Store set ID table size"),
INIT_PARAM(numPhysIntRegs, "Number of physical integer registers"),
INIT_PARAM(numPhysFloatRegs, "Number of physical floating point "
"registers"),
INIT_PARAM(numIQEntries, "Number of instruction queue entries"),
INIT_PARAM(numROBEntries, "Number of reorder buffer entries"),
INIT_PARAM_DFLT(decoupledFrontEnd, "Decoupled front end", true),
INIT_PARAM_DFLT(dispatchWidth, "Dispatch width", 0),
INIT_PARAM_DFLT(wbWidth, "Writeback width", 0),
INIT_PARAM_DFLT(smtNumFetchingThreads, "SMT Number of Fetching Threads", 1),
INIT_PARAM_DFLT(smtFetchPolicy, "SMT Fetch Policy", "SingleThread"),
INIT_PARAM_DFLT(smtLSQPolicy, "SMT LSQ Sharing Policy", "Partitioned"),
INIT_PARAM_DFLT(smtLSQThreshold,"SMT LSQ Threshold", 100),
INIT_PARAM_DFLT(smtIQPolicy, "SMT IQ Policy", "Partitioned"),
INIT_PARAM_DFLT(smtIQThreshold, "SMT IQ Threshold", 100),
INIT_PARAM_DFLT(smtROBPolicy, "SMT ROB Sharing Policy", "Partitioned"),
INIT_PARAM_DFLT(smtROBThreshold,"SMT ROB Threshold", 100),
INIT_PARAM_DFLT(smtCommitPolicy,"SMT Commit Fetch Policy", "RoundRobin"),
INIT_PARAM(instShiftAmt, "Number of bits to shift instructions by"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(SimpleOzoneCPU)
CREATE_SIM_OBJECT(SimpleOzoneCPU)
{
SimpleOzoneCPU *cpu;
#if FULL_SYSTEM
// Full-system only supports a single thread for the moment.
int actual_num_threads = 1;
#else
// In non-full-system mode, we infer the number of threads from
// the workload if it's not explicitly specified.
int actual_num_threads =
numThreads.isValid() ? numThreads : workload.size();
if (workload.size() == 0) {
fatal("Must specify at least one workload!");
}
#endif
SimpleParams *params = new SimpleParams;
params->clock = clock;
params->name = getInstanceName();
params->numberOfThreads = actual_num_threads;
#if FULL_SYSTEM
params->system = system;
params->cpu_id = cpu_id;
params->itb = itb;
params->dtb = dtb;
#else
params->workload = workload;
// params->pTable = page_table;
#endif // FULL_SYSTEM
params->mem = mem;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
//
// Caches
//
params->icacheInterface = icache ? icache->getInterface() : NULL;
params->dcacheInterface = dcache ? dcache->getInterface() : NULL;
params->cachePorts = cachePorts;
params->width = width;
params->frontEndWidth = frontEndWidth;
params->backEndWidth = backEndWidth;
params->backEndSquashLatency = backEndSquashLatency;
params->backEndLatency = backEndLatency;
params->maxInstBufferSize = maxInstBufferSize;
params->numPhysicalRegs = numPhysIntRegs + numPhysFloatRegs;
params->decodeToFetchDelay = decodeToFetchDelay;
params->renameToFetchDelay = renameToFetchDelay;
params->iewToFetchDelay = iewToFetchDelay;
params->commitToFetchDelay = commitToFetchDelay;
params->fetchWidth = fetchWidth;
params->renameToDecodeDelay = renameToDecodeDelay;
params->iewToDecodeDelay = iewToDecodeDelay;
params->commitToDecodeDelay = commitToDecodeDelay;
params->fetchToDecodeDelay = fetchToDecodeDelay;
params->decodeWidth = decodeWidth;
params->iewToRenameDelay = iewToRenameDelay;
params->commitToRenameDelay = commitToRenameDelay;
params->decodeToRenameDelay = decodeToRenameDelay;
params->renameWidth = renameWidth;
params->commitToIEWDelay = commitToIEWDelay;
params->renameToIEWDelay = renameToIEWDelay;
params->issueToExecuteDelay = issueToExecuteDelay;
params->issueWidth = issueWidth;
params->executeWidth = executeWidth;
params->executeIntWidth = executeIntWidth;
params->executeFloatWidth = executeFloatWidth;
params->executeBranchWidth = executeBranchWidth;
params->executeMemoryWidth = executeMemoryWidth;
params->iewToCommitDelay = iewToCommitDelay;
params->renameToROBDelay = renameToROBDelay;
params->commitWidth = commitWidth;
params->squashWidth = squashWidth;
params->localPredictorSize = localPredictorSize;
params->localCtrBits = localCtrBits;
params->localHistoryTableSize = localHistoryTableSize;
params->localHistoryBits = localHistoryBits;
params->globalPredictorSize = globalPredictorSize;
params->globalCtrBits = globalCtrBits;
params->globalHistoryBits = globalHistoryBits;
params->choicePredictorSize = choicePredictorSize;
params->choiceCtrBits = choiceCtrBits;
params->BTBEntries = BTBEntries;
params->BTBTagSize = BTBTagSize;
params->RASSize = RASSize;
params->LQEntries = LQEntries;
params->SQEntries = SQEntries;
params->SSITSize = SSITSize;
params->LFSTSize = LFSTSize;
params->numPhysIntRegs = numPhysIntRegs;
params->numPhysFloatRegs = numPhysFloatRegs;
params->numIQEntries = numIQEntries;
params->numROBEntries = numROBEntries;
params->decoupledFrontEnd = decoupledFrontEnd;
params->dispatchWidth = dispatchWidth;
params->wbWidth = wbWidth;
params->smtNumFetchingThreads = smtNumFetchingThreads;
params->smtFetchPolicy = smtFetchPolicy;
params->smtIQPolicy = smtIQPolicy;
params->smtLSQPolicy = smtLSQPolicy;
params->smtLSQThreshold = smtLSQThreshold;
params->smtROBPolicy = smtROBPolicy;
params->smtROBThreshold = smtROBThreshold;
params->smtCommitPolicy = smtCommitPolicy;
params->instShiftAmt = 2;
params->deferRegistration = defer_registration;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
cpu = new SimpleOzoneCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("SimpleOzoneCPU", SimpleOzoneCPU)

File diff suppressed because it is too large Load diff

35
cpu/ozone/dyn_inst.cc Normal file
View file

@ -0,0 +1,35 @@
/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/ozone/dyn_inst_impl.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
template class OzoneDynInst<OzoneImpl>;
template class OzoneDynInst<SimpleImpl>;

261
cpu/ozone/dyn_inst.hh Normal file
View file

@ -0,0 +1,261 @@
/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_DYN_INST_HH__
#define __CPU_OZONE_DYN_INST_HH__
#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/ozone/cpu.hh" // MUST include this
#include "cpu/inst_seq.hh"
#include "cpu/ozone/simple_impl.hh" // Would be nice to not have to include this
#include "cpu/ozone/ozone_impl.hh"
#include <list>
#include <vector>
template <class Impl>
class OzoneDynInst : public BaseDynInst<Impl>
{
public:
// Typedefs
typedef typename Impl::FullCPU FullCPU;
typedef typename FullCPU::ImplState ImplState;
// Typedef for DynInstPtr. This is really just a RefCountingPtr<OoODynInst>.
typedef typename Impl::DynInstPtr DynInstPtr;
// typedef typename Impl::BranchPred::BPredInfo BPredInfo;
typedef TheISA::ExtMachInst ExtMachInst;
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef typename std::list<DynInstPtr>::iterator ListIt;
// Note that this is duplicated from the BaseDynInst class; I'm simply not
// sure the enum would carry through so I could use it in array
// declarations in this class.
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs,
MaxInstDestRegs = TheISA::MaxInstDestRegs
};
OzoneDynInst(FullCPU *cpu);
OzoneDynInst(ExtMachInst inst, Addr PC, Addr Pred_PC,
InstSeqNum seq_num, FullCPU *cpu);
OzoneDynInst(StaticInstPtr inst);
~OzoneDynInst();
void setSrcInst(DynInstPtr &newSrcInst, int regIdx)
{ srcInsts[regIdx] = newSrcInst; }
bool srcInstReady(int regIdx);
void setPrevDestInst(DynInstPtr &oldDestInst, int regIdx)
{ prevDestInst[regIdx] = oldDestInst; }
DynInstPtr &getPrevDestInst(int regIdx)
{ return prevDestInst[regIdx]; }
void addDependent(DynInstPtr &dependent_inst);
std::vector<DynInstPtr> &getDependents() { return dependents; }
void wakeDependents();
// void setBPredInfo(const BPredInfo &bp_info) { bpInfo = bp_info; }
// BPredInfo &getBPredInfo() { return bpInfo; }
// OzoneXC *thread;
private:
void initInstPtrs();
std::vector<DynInstPtr> dependents;
/** The instruction that produces the value of the source registers. These
* may be NULL if the value has already been read from the source
* instruction.
*/
DynInstPtr srcInsts[MaxInstSrcRegs];
/**
* Previous rename instruction for this destination.
*/
DynInstPtr prevDestInst[MaxInstSrcRegs];
// BPredInfo bpInfo;
public:
Fault initiateAcc();
Fault completeAcc();
/*
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
*/
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(const StaticInst *si, int idx)
{
return srcInsts[idx]->readIntResult();
}
float readFloatRegSingle(const StaticInst *si, int idx)
{
return srcInsts[idx]->readFloatResult();
}
double readFloatRegDouble(const StaticInst *si, int idx)
{
return srcInsts[idx]->readDoubleResult();
}
uint64_t readFloatRegInt(const StaticInst *si, int idx)
{
return srcInsts[idx]->readIntResult();
}
/** @todo: Make results into arrays so they can handle multiple dest
* registers.
*/
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
this->instResult.integer = val;
}
void setFloatRegSingle(const StaticInst *si, int idx, float val)
{
this->instResult.fp = val;
}
void setFloatRegDouble(const StaticInst *si, int idx, double val)
{
this->instResult.dbl = val;
}
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
{
this->instResult.integer = val;
}
void setIntResult(uint64_t result) { this->instResult.integer = result; }
void setDoubleResult(double result) { this->instResult.dbl = result; }
bool srcsReady();
bool eaSrcsReady();
Fault execute();
Fault executeEAComp()
{ return NoFault; }
Fault executeMemAcc()
{ return this->staticInst->memAccInst()->execute(this, this->traceData); }
void clearDependents();
public:
// ISA stuff
MiscReg readMiscReg(int misc_reg);
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault);
Fault setMiscReg(int misc_reg, const MiscReg &val);
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val);
#if FULL_SYSTEM
Fault hwrei();
int readIntrFlag();
void setIntrFlag(int val);
bool inPalMode();
void trap(Fault fault);
bool simPalCheck(int palFunc);
#else
void syscall();
#endif
ListIt iqIt;
bool iqItValid;
};
/*
template<class Impl>
template<class T>
inline Fault
OzoneDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
{
Fault fault = this->cpu->read(addr, data, flags, this);
if (this->traceData) {
this->traceData->setAddr(addr);
this->traceData->setData(data);
}
return fault;
}
template<class Impl>
template<class T>
inline Fault
OzoneDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
Fault fault = this->cpu->write(data, addr, flags, res, this);
this->storeSize = sizeof(T);
this->storeData = data;
if (this->traceData) {
this->traceData->setAddr(addr);
this->traceData->setData(data);
}
return fault;
}
*/
#endif // __CPU_OZONE_DYN_INST_HH__

286
cpu/ozone/dyn_inst_impl.hh Normal file
View file

@ -0,0 +1,286 @@
/*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "kern/kernel_stats.hh"
using namespace TheISA;
template <class Impl>
OzoneDynInst<Impl>::OzoneDynInst(FullCPU *cpu)
: BaseDynInst<Impl>(0, 0, 0, 0, cpu)
{
this->setCompleted();
initInstPtrs();
}
template <class Impl>
OzoneDynInst<Impl>::OzoneDynInst(ExtMachInst inst, Addr PC, Addr Pred_PC,
InstSeqNum seq_num, FullCPU *cpu)
: BaseDynInst<Impl>(inst, PC, Pred_PC, seq_num, cpu)
{
initInstPtrs();
}
template <class Impl>
OzoneDynInst<Impl>::OzoneDynInst(StaticInstPtr _staticInst)
: BaseDynInst<Impl>(_staticInst)
{
initInstPtrs();
}
template <class Impl>
OzoneDynInst<Impl>::~OzoneDynInst()
{
DPRINTF(BE, "[sn:%lli] destructor called\n", this->seqNum);
for (int i = 0; i < this->numSrcRegs(); ++i) {
srcInsts[i] = NULL;
}
for (int i = 0; i < this->numDestRegs(); ++i) {
prevDestInst[i] = NULL;
}
dependents.clear();
}
template <class Impl>
Fault
OzoneDynInst<Impl>::execute()
{
// @todo: Pretty convoluted way to avoid squashing from happening when using
// the XC during an instruction's execution (specifically for instructions
// that have sideeffects that use the XC). Fix this.
bool in_syscall = this->thread->inSyscall;
this->thread->inSyscall = true;
this->fault = this->staticInst->execute(this, this->traceData);
this->thread->inSyscall = in_syscall;
return this->fault;
}
template <class Impl>
Fault
OzoneDynInst<Impl>::initiateAcc()
{
// @todo: Pretty convoluted way to avoid squashing from happening when using
// the XC during an instruction's execution (specifically for instructions
// that have sideeffects that use the XC). Fix this.
bool in_syscall = this->thread->inSyscall;
this->thread->inSyscall = true;
this->fault = this->staticInst->initiateAcc(this, this->traceData);
this->thread->inSyscall = in_syscall;
return this->fault;
}
template <class Impl>
Fault
OzoneDynInst<Impl>::completeAcc()
{
if (this->isLoad()) {
this->fault = this->staticInst->completeAcc(this->req->data,
this,
this->traceData);
} else if (this->isStore()) {
this->fault = this->staticInst->completeAcc((uint8_t*)&this->req->result,
this,
this->traceData);
} else {
panic("Unknown type!");
}
return this->fault;
}
template <class Impl>
bool
OzoneDynInst<Impl>::srcInstReady(int regIdx)
{
return srcInsts[regIdx]->isCompleted();
}
template <class Impl>
void
OzoneDynInst<Impl>::addDependent(DynInstPtr &dependent_inst)
{
dependents.push_back(dependent_inst);
}
template <class Impl>
void
OzoneDynInst<Impl>::wakeDependents()
{
for (int i = 0; i < dependents.size(); ++i) {
dependents[i]->markSrcRegReady();
}
}
template <class Impl>
void
OzoneDynInst<Impl>::initInstPtrs()
{
for (int i = 0; i < MaxInstSrcRegs; ++i) {
srcInsts[i] = NULL;
}
iqItValid = false;
}
template <class Impl>
bool
OzoneDynInst<Impl>::srcsReady()
{
for (int i = 0; i < this->numSrcRegs(); ++i) {
if (!srcInsts[i]->isCompleted())
return false;
}
return true;
}
template <class Impl>
bool
OzoneDynInst<Impl>::eaSrcsReady()
{
for (int i = 1; i < this->numSrcRegs(); ++i) {
if (!srcInsts[i]->isCompleted())
return false;
}
return true;
}
template <class Impl>
void
OzoneDynInst<Impl>::clearDependents()
{
dependents.clear();
for (int i = 0; i < this->numSrcRegs(); ++i) {
srcInsts[i] = NULL;
}
for (int i = 0; i < this->numDestRegs(); ++i) {
prevDestInst[i] = NULL;
}
}
template <class Impl>
MiscReg
OzoneDynInst<Impl>::readMiscReg(int misc_reg)
{
return this->thread->readMiscReg(misc_reg);
}
template <class Impl>
MiscReg
OzoneDynInst<Impl>::readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return this->thread->readMiscRegWithEffect(misc_reg, fault);
}
template <class Impl>
Fault
OzoneDynInst<Impl>::setMiscReg(int misc_reg, const MiscReg &val)
{
return this->thread->setMiscReg(misc_reg, val);
}
template <class Impl>
Fault
OzoneDynInst<Impl>::setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return this->thread->setMiscRegWithEffect(misc_reg, val);
}
#if FULL_SYSTEM
template <class Impl>
Fault
OzoneDynInst<Impl>::hwrei()
{
if (!this->cpu->inPalMode(this->readPC()))
return new AlphaISA::UnimplementedOpcodeFault;
this->setNextPC(this->thread->readMiscReg(AlphaISA::IPR_EXC_ADDR));
this->cpu->kernelStats->hwrei();
this->cpu->checkInterrupts = true;
// FIXME: XXX check for interrupts? XXX
return NoFault;
}
template <class Impl>
int
OzoneDynInst<Impl>::readIntrFlag()
{
return this->cpu->readIntrFlag();
}
template <class Impl>
void
OzoneDynInst<Impl>::setIntrFlag(int val)
{
this->cpu->setIntrFlag(val);
}
template <class Impl>
bool
OzoneDynInst<Impl>::inPalMode()
{
return this->cpu->inPalMode();
}
template <class Impl>
void
OzoneDynInst<Impl>::trap(Fault fault)
{
fault->invoke(this->thread->getXCProxy());
}
template <class Impl>
bool
OzoneDynInst<Impl>::simPalCheck(int palFunc)
{
return this->cpu->simPalCheck(palFunc);
}
#else
template <class Impl>
void
OzoneDynInst<Impl>::syscall()
{
this->cpu->syscall();
}
#endif

7
cpu/ozone/front_end.cc Normal file
View file

@ -0,0 +1,7 @@
#include "cpu/ozone/front_end_impl.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
template class FrontEnd<OzoneImpl>;
template class FrontEnd<SimpleImpl>;

242
cpu/ozone/front_end.hh Normal file
View file

@ -0,0 +1,242 @@
#ifndef __CPU_OZONE_FRONT_END_HH__
#define __CPU_OZONE_FRONT_END_HH__
#include <deque>
//#include "cpu/ozone/cpu.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/bpred_unit.hh"
#include "cpu/ozone/rename_table.hh"
//#include "cpu/ozone/thread_state.hh"
#include "mem/mem_req.hh"
#include "sim/eventq.hh"
#include "sim/stats.hh"
class ExecContext;
class MemInterface;
template <class>
class OzoneThreadState;
class PageTable;
template <class>
class TimeBuffer;
template <class Impl>
class FrontEnd
{
public:
typedef typename Impl::Params Params;
typedef typename Impl::DynInst DynInst;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::BackEnd BackEnd;
typedef typename Impl::FullCPU::OzoneXC OzoneXC;
typedef typename Impl::FullCPU::CommStruct CommStruct;
FrontEnd(Params *params);
std::string name() const;
void setCPU(FullCPU *cpu_ptr)
{ cpu = cpu_ptr; }
void setBackEnd(BackEnd *back_end_ptr)
{ backEnd = back_end_ptr; }
void setCommBuffer(TimeBuffer<CommStruct> *_comm);
void setXC(ExecContext *xc_ptr);
void setThreadState(OzoneThreadState<Impl> *thread_ptr)
{ thread = thread_ptr; }
void regStats();
void tick();
Fault fetchCacheLine();
void processInst(DynInstPtr &inst);
void squash(const InstSeqNum &squash_num, const Addr &next_PC,
const bool is_branch = false, const bool branch_taken = false);
DynInstPtr getInst();
void processCacheCompletion();
void addFreeRegs(int num_freed);
bool isEmpty() { return instBuffer.empty(); }
private:
bool updateStatus();
void checkBE();
DynInstPtr getInstFromCacheline();
void renameInst(DynInstPtr &inst);
// Returns true if we need to stop the front end this cycle
bool processBarriers(DynInstPtr &inst);
void handleFault(Fault &fault);
// Align an address (typically a PC) to the start of an I-cache block.
// We fold in the PISA 64- to 32-bit conversion here as well.
Addr icacheBlockAlignPC(Addr addr)
{
addr = TheISA::realPCToFetchPC(addr);
return (addr & ~(cacheBlkMask));
}
InstSeqNum getAndIncrementInstSeq()
{ return cpu->globalSeqNum++; }
public:
FullCPU *cpu;
BackEnd *backEnd;
ExecContext *xc;
OzoneThreadState<Impl> *thread;
enum Status {
Running,
Idle,
IcacheMissStall,
IcacheMissComplete,
SerializeBlocked,
SerializeComplete,
RenameBlocked,
BEBlocked
};
Status status;
private:
TimeBuffer<CommStruct> *comm;
typename TimeBuffer<CommStruct>::wire fromCommit;
typedef typename Impl::BranchPred BranchPred;
// Typedef for semi-opaque type that holds any information the branch
// predictor needs to update itself. Only two fields are used outside of
// branch predictor, nextPC and isTaken.
// typedef typename BranchPred::BPredInfo BPredInfo;
BranchPred branchPred;
class ICacheCompletionEvent : public Event
{
private:
FrontEnd *frontEnd;
public:
ICacheCompletionEvent(FrontEnd *_fe);
virtual void process();
virtual const char *description();
};
ICacheCompletionEvent cacheCompletionEvent;
MemInterface *icacheInterface;
#if !FULL_SYSTEM
PageTable *pTable;
#endif
MemReqPtr memReq;
/** Mask to get a cache block's address. */
Addr cacheBlkMask;
unsigned cacheBlkSize;
Addr cacheBlkPC;
/** The cache line being fetched. */
uint8_t *cacheData;
bool fetchCacheLineNextCycle;
bool cacheBlkValid;
public:
RenameTable<Impl> renameTable;
private:
Addr PC;
Addr nextPC;
public:
void setPC(Addr val) { PC = val; }
void setNextPC(Addr val) { nextPC = val; }
void dumpInsts();
private:
typedef typename std::deque<DynInstPtr> InstBuff;
typedef typename InstBuff::iterator InstBuffIt;
InstBuff instBuffer;
int instBufferSize;
int maxInstBufferSize;
int width;
int freeRegs;
int numPhysRegs;
bool serializeNext;
DynInstPtr barrierInst;
// number of idle cycles
/*
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
*/
// @todo: Consider making these vectors and tracking on a per thread basis.
/** Stat for total number of cycles stalled due to an icache miss. */
Stats::Scalar<> icacheStallCycles;
/** Stat for total number of fetched instructions. */
Stats::Scalar<> fetchedInsts;
Stats::Scalar<> fetchedBranches;
/** Stat for total number of predicted branches. */
Stats::Scalar<> predictedBranches;
/** Stat for total number of cycles spent fetching. */
Stats::Scalar<> fetchCycles;
Stats::Scalar<> fetchIdleCycles;
/** Stat for total number of cycles spent squashing. */
Stats::Scalar<> fetchSquashCycles;
/** Stat for total number of cycles spent blocked due to other stages in
* the pipeline.
*/
Stats::Scalar<> fetchBlockedCycles;
/** Stat for total number of fetched cache lines. */
Stats::Scalar<> fetchedCacheLines;
/** Distribution of number of instructions fetched each cycle. */
Stats::Distribution<> fetchNisnDist;
// Stats::Vector<> qfull_iq_occupancy;
// Stats::VectorDistribution<> qfull_iq_occ_dist_;
Stats::Formula idleRate;
Stats::Formula branchRate;
Stats::Formula fetchRate;
Stats::Scalar<> IFQCount; // cumulative IFQ occupancy
Stats::Formula IFQOccupancy;
Stats::Formula IFQLatency;
Stats::Scalar<> IFQFcount; // cumulative IFQ full count
Stats::Formula IFQFullRate;
Stats::Scalar<> dispatchCountStat;
Stats::Scalar<> dispatchedSerializing;
Stats::Scalar<> dispatchedTempSerializing;
Stats::Scalar<> dispatchSerializeStallCycles;
Stats::Formula dispatchRate;
Stats::Formula regIntFull;
Stats::Formula regFpFull;
};
#endif // __CPU_OZONE_FRONT_END_HH__

798
cpu/ozone/front_end_impl.hh Normal file
View file

@ -0,0 +1,798 @@
#include "arch/isa_traits.hh"
#include "base/statistics.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/ozone/front_end.hh"
#include "mem/mem_interface.hh"
#include "sim/byte_swap.hh"
using namespace TheISA;
template <class Impl>
FrontEnd<Impl>::FrontEnd(Params *params)
: branchPred(params),
cacheCompletionEvent(this),
icacheInterface(params->icacheInterface),
instBufferSize(0),
maxInstBufferSize(params->maxInstBufferSize),
width(params->frontEndWidth),
freeRegs(params->numPhysicalRegs),
numPhysRegs(params->numPhysicalRegs),
serializeNext(false)
{
status = Idle;
// Setup branch predictor.
// Setup Memory Request
memReq = new MemReq();
memReq->asid = 0;
memReq->data = new uint8_t[64];
// Size of cache block.
cacheBlkSize = icacheInterface ? icacheInterface->getBlockSize() : 64;
assert(isPowerOf2(cacheBlkSize));
// Create mask to get rid of offset bits.
cacheBlkMask = (cacheBlkSize - 1);
// Create space to store a cache line.
cacheData = new uint8_t[cacheBlkSize];
fetchCacheLineNextCycle = true;
cacheBlkValid = false;
#if !FULL_SYSTEM
pTable = params->pTable;
#endif
}
template <class Impl>
std::string
FrontEnd<Impl>::name() const
{
return cpu->name() + ".frontend";
}
template <class Impl>
void
FrontEnd<Impl>::setCommBuffer(TimeBuffer<CommStruct> *_comm)
{
comm = _comm;
// @todo: Hardcoded for now. Allow this to be set by a latency.
fromCommit = comm->getWire(-1);
}
template <class Impl>
void
FrontEnd<Impl>::setXC(ExecContext *xc_ptr)
{
xc = xc_ptr;
memReq->xc = xc;
}
template <class Impl>
void
FrontEnd<Impl>::regStats()
{
icacheStallCycles
.name(name() + ".icacheStallCycles")
.desc("Number of cycles fetch is stalled on an Icache miss")
.prereq(icacheStallCycles);
fetchedInsts
.name(name() + ".fetchedInsts")
.desc("Number of instructions fetch has processed")
.prereq(fetchedInsts);
fetchedBranches
.name(name() + ".fetchedBranches")
.desc("Number of fetched branches")
.prereq(fetchedBranches);
predictedBranches
.name(name() + ".predictedBranches")
.desc("Number of branches that fetch has predicted taken")
.prereq(predictedBranches);
fetchCycles
.name(name() + ".fetchCycles")
.desc("Number of cycles fetch has run and was not squashing or"
" blocked")
.prereq(fetchCycles);
fetchIdleCycles
.name(name() + ".fetchIdleCycles")
.desc("Number of cycles fetch was idle")
.prereq(fetchIdleCycles);
fetchSquashCycles
.name(name() + ".fetchSquashCycles")
.desc("Number of cycles fetch has spent squashing")
.prereq(fetchSquashCycles);
fetchBlockedCycles
.name(name() + ".fetchBlockedCycles")
.desc("Number of cycles fetch has spent blocked")
.prereq(fetchBlockedCycles);
fetchedCacheLines
.name(name() + ".fetchedCacheLines")
.desc("Number of cache lines fetched")
.prereq(fetchedCacheLines);
fetchNisnDist
.init(/* base value */ 0,
/* last value */ width,
/* bucket size */ 1)
.name(name() + ".rateDist")
.desc("Number of instructions fetched each cycle (Total)")
.flags(Stats::pdf);
idleRate
.name(name() + ".idleRate")
.desc("Percent of cycles fetch was idle")
.prereq(idleRate);
idleRate = fetchIdleCycles * 100 / cpu->numCycles;
branchRate
.name(name() + ".branchRate")
.desc("Number of branch fetches per cycle")
.flags(Stats::total);
branchRate = fetchedBranches / cpu->numCycles;
fetchRate
.name(name() + ".rate")
.desc("Number of inst fetches per cycle")
.flags(Stats::total);
fetchRate = fetchedInsts / cpu->numCycles;
IFQCount
.name(name() + ".IFQ:count")
.desc("cumulative IFQ occupancy")
;
IFQFcount
.name(name() + ".IFQ:fullCount")
.desc("cumulative IFQ full count")
.flags(Stats::total)
;
IFQOccupancy
.name(name() + ".IFQ:occupancy")
.desc("avg IFQ occupancy (inst's)")
;
IFQOccupancy = IFQCount / cpu->numCycles;
IFQLatency
.name(name() + ".IFQ:latency")
.desc("avg IFQ occupant latency (cycle's)")
.flags(Stats::total)
;
IFQFullRate
.name(name() + ".IFQ:fullRate")
.desc("fraction of time (cycles) IFQ was full")
.flags(Stats::total);
;
IFQFullRate = IFQFcount * Stats::constant(100) / cpu->numCycles;
dispatchCountStat
.name(name() + ".DIS:count")
.desc("cumulative count of dispatched insts")
.flags(Stats::total)
;
dispatchedSerializing
.name(name() + ".DIS:serializingInsts")
.desc("count of serializing insts dispatched")
.flags(Stats::total)
;
dispatchedTempSerializing
.name(name() + ".DIS:tempSerializingInsts")
.desc("count of temporary serializing insts dispatched")
.flags(Stats::total)
;
dispatchSerializeStallCycles
.name(name() + ".DIS:serializeStallCycles")
.desc("count of cycles dispatch stalled for serializing inst")
.flags(Stats::total)
;
dispatchRate
.name(name() + ".DIS:rate")
.desc("dispatched insts per cycle")
.flags(Stats::total)
;
dispatchRate = dispatchCountStat / cpu->numCycles;
regIntFull
.name(name() + ".REG:int:full")
.desc("number of cycles where there were no INT registers")
;
regFpFull
.name(name() + ".REG:fp:full")
.desc("number of cycles where there were no FP registers")
;
IFQLatency = IFQOccupancy / dispatchRate;
branchPred.regStats();
}
template <class Impl>
void
FrontEnd<Impl>::tick()
{
// @todo: Maybe I want to just have direct communication...
if (fromCommit->doneSeqNum) {
branchPred.update(fromCommit->doneSeqNum, 0);
}
IFQCount += instBufferSize;
IFQFcount += instBufferSize == maxInstBufferSize;
// Fetch cache line
if (status == IcacheMissComplete) {
cacheBlkValid = true;
status = Running;
if (barrierInst)
status = SerializeBlocked;
if (freeRegs <= 0)
status = RenameBlocked;
checkBE();
} else if (status == IcacheMissStall) {
DPRINTF(FE, "Still in Icache miss stall.\n");
icacheStallCycles++;
return;
}
if (status == RenameBlocked || status == SerializeBlocked ||
status == BEBlocked) {
// This might cause the front end to run even though it
// shouldn't, but this should only be a problem for one cycle.
// Also will cause a one cycle bubble between changing state
// and restarting.
DPRINTF(FE, "In blocked status.\n");
fetchBlockedCycles++;
if (status == SerializeBlocked) {
dispatchSerializeStallCycles++;
}
updateStatus();
return;
} else if (status != IcacheMissComplete) {
if (fetchCacheLineNextCycle) {
Fault fault = fetchCacheLine();
if (fault != NoFault) {
handleFault(fault);
return;
}
fetchCacheLineNextCycle = false;
}
// If miss, stall until it returns.
if (status == IcacheMissStall) {
// Tell CPU to not tick me for now.
return;
}
}
fetchCycles++;
int num_inst = 0;
// Otherwise loop and process instructions.
// One way to hack infinite width is to set width and maxInstBufferSize
// both really high. Inelegant, but probably will work.
while (num_inst < width &&
instBufferSize < maxInstBufferSize) {
// Get instruction from cache line.
DynInstPtr inst = getInstFromCacheline();
if (!inst) {
// PC is no longer in the cache line, end fetch.
// Might want to check this at the end of the cycle so that
// there's no cycle lost to checking for a new cache line.
DPRINTF(FE, "Need to get new cache line\n");
fetchCacheLineNextCycle = true;
break;
}
// if (generalizeFetch) {
processInst(inst);
if (status == SerializeBlocked) {
break;
}
// Possibly push into a time buffer that estimates the front end
// latency
instBuffer.push_back(inst);
++instBufferSize;
++num_inst;
// } else {
// fetch(num_inst);
// decode(num_inst);
// rename(num_inst);
// }
if (inst->predTaken()) {
// Start over with tick?
break;
} else if (freeRegs <= 0) {
DPRINTF(FE, "Ran out of free registers to rename to!\n");
status = RenameBlocked;
break;
} else if (serializeNext) {
break;
}
}
fetchNisnDist.sample(num_inst);
checkBE();
DPRINTF(FE, "Num insts processed: %i, Inst Buffer size: %i, Free "
"Regs %i\n", num_inst, instBufferSize, freeRegs);
}
template <class Impl>
Fault
FrontEnd<Impl>::fetchCacheLine()
{
// Read a cache line, based on the current PC.
#if FULL_SYSTEM
// Flag to say whether or not address is physical addr.
unsigned flags = cpu->inPalMode() ? PHYSICAL : 0;
#else
unsigned flags = 0;
#endif // FULL_SYSTEM
Fault fault = NoFault;
// Align the fetch PC so it's at the start of a cache block.
Addr fetch_PC = icacheBlockAlignPC(PC);
DPRINTF(FE, "Fetching cache line starting at %#x.\n", fetch_PC);
// Setup the memReq to do a read of the first isntruction's address.
// Set the appropriate read size and flags as well.
memReq->cmd = Read;
memReq->reset(fetch_PC, cacheBlkSize, flags);
// Translate the instruction request.
fault = cpu->translateInstReq(memReq);
// In the case of faults, the fetch stage may need to stall and wait
// on what caused the fetch (ITB or Icache miss).
// assert(fault == NoFault);
// Now do the timing access to see whether or not the instruction
// exists within the cache.
if (icacheInterface && fault == NoFault) {
memReq->completionEvent = NULL;
memReq->time = curTick;
MemAccessResult res = icacheInterface->access(memReq);
// If the cache missed then schedule an event to wake
// up this stage once the cache miss completes.
if (icacheInterface->doEvents() && res != MA_HIT) {
memReq->completionEvent = new ICacheCompletionEvent(this);
status = IcacheMissStall;
cacheBlkValid = false;
DPRINTF(FE, "Cache miss.\n");
} else {
DPRINTF(FE, "Cache hit.\n");
cacheBlkValid = true;
memcpy(cacheData, memReq->data, memReq->size);
}
}
// Note that this will set the cache block PC a bit earlier than it should
// be set.
cacheBlkPC = fetch_PC;
++fetchedCacheLines;
DPRINTF(FE, "Done fetching cache line.\n");
return fault;
}
template <class Impl>
void
FrontEnd<Impl>::processInst(DynInstPtr &inst)
{
if (processBarriers(inst)) {
return;
}
Addr inst_PC = inst->readPC();
// BPredInfo bp_info = branchPred.lookup(inst_PC);
if (!inst->isControl()) {
inst->setPredTarg(inst->readNextPC());
} else {
fetchedBranches++;
if (branchPred.predict(inst, inst_PC, inst->threadNumber)) {
predictedBranches++;
}
}
Addr next_PC = inst->readPredTarg();
DPRINTF(FE, "[sn:%lli] Predicted and processed inst PC %#x, next PC "
"%#x\n", inst->seqNum, inst_PC, next_PC);
// inst->setNextPC(next_PC);
// inst->setBPredInfo(bp_info);
// Not sure where I should set this
PC = next_PC;
renameInst(inst);
}
template <class Impl>
bool
FrontEnd<Impl>::processBarriers(DynInstPtr &inst)
{
if (serializeNext) {
inst->setSerializeBefore();
serializeNext = false;
} else if (!inst->isSerializing()) {
return false;
}
if (inst->isSerializeBefore() && !inst->isSerializeHandled()) {
DPRINTF(FE, "Serialize before instruction encountered.\n");
if (!inst->isTempSerializeBefore()) {
dispatchedSerializing++;
inst->setSerializeHandled();
} else {
dispatchedTempSerializing++;
}
// Change status over to BarrierStall so that other stages know
// what this is blocked on.
status = SerializeBlocked;
barrierInst = inst;
return true;
} else if (inst->isSerializeAfter() && !inst->isSerializeHandled()) {
DPRINTF(FE, "Serialize after instruction encountered.\n");
inst->setSerializeHandled();
dispatchedSerializing++;
serializeNext = true;
return false;
}
return false;
}
template <class Impl>
void
FrontEnd<Impl>::handleFault(Fault &fault)
{
DPRINTF(FE, "Fault at fetch, telling commit\n");
backEnd->fetchFault(fault);
// We're blocked on the back end until it handles this fault.
status = BEBlocked;
}
template <class Impl>
void
FrontEnd<Impl>::squash(const InstSeqNum &squash_num, const Addr &next_PC,
const bool is_branch, const bool branch_taken)
{
DPRINTF(FE, "Squashing from [sn:%lli], setting PC to %#x\n",
squash_num, next_PC);
while (!instBuffer.empty() &&
instBuffer.back()->seqNum > squash_num) {
DynInstPtr inst = instBuffer.back();
DPRINTF(FE, "Squashing instruction [sn:%lli] PC %#x\n",
inst->seqNum, inst->readPC());
inst->clearDependents();
instBuffer.pop_back();
--instBufferSize;
// Fix up branch predictor if necessary.
// branchPred.undo(inst->getBPredInfo());
freeRegs+= inst->numDestRegs();
}
// Copy over rename table from the back end.
renameTable.copyFrom(backEnd->renameTable);
PC = next_PC;
// Update BP with proper information.
if (is_branch) {
branchPred.squash(squash_num, next_PC, branch_taken, 0);
} else {
branchPred.squash(squash_num, 0);
}
// Clear the icache miss if it's outstanding.
if (status == IcacheMissStall && icacheInterface) {
DPRINTF(FE, "Squashing outstanding Icache miss.\n");
icacheInterface->squash(0);
}
if (status == SerializeBlocked) {
assert(barrierInst->seqNum > squash_num);
barrierInst = NULL;
}
// Unless this squash originated from the front end, we're probably
// in running mode now.
// Actually might want to make this latency dependent.
status = Running;
fetchCacheLineNextCycle = true;
}
template <class Impl>
typename Impl::DynInstPtr
FrontEnd<Impl>::getInst()
{
if (instBufferSize == 0) {
return NULL;
}
DynInstPtr inst = instBuffer.front();
instBuffer.pop_front();
--instBufferSize;
dispatchCountStat++;
return inst;
}
template <class Impl>
void
FrontEnd<Impl>::processCacheCompletion()
{
DPRINTF(FE, "Processing cache completion\n");
// Do something here.
if (status != IcacheMissStall) {
DPRINTF(FE, "Previous fetch was squashed.\n");
return;
}
status = IcacheMissComplete;
/* if (checkStall(tid)) {
fetchStatus[tid] = Blocked;
} else {
fetchStatus[tid] = IcacheMissComplete;
}
*/
memcpy(cacheData, memReq->data, memReq->size);
// Reset the completion event to NULL.
memReq->completionEvent = NULL;
}
template <class Impl>
void
FrontEnd<Impl>::addFreeRegs(int num_freed)
{
if (status == RenameBlocked && freeRegs + num_freed > 0) {
status = Running;
}
freeRegs+= num_freed;
assert(freeRegs <= numPhysRegs);
}
template <class Impl>
bool
FrontEnd<Impl>::updateStatus()
{
// bool rename_block = freeRegs <= 0;
bool serialize_block = !backEnd->robEmpty() || instBufferSize;
bool be_block = cpu->decoupledFrontEnd ? false : backEnd->isBlocked();
bool ret_val = false;
/*
// Should already be handled through addFreeRegs function
if (status == RenameBlocked && !rename_block) {
status = Running;
ret_val = true;
}
*/
if (status == SerializeBlocked && !serialize_block) {
status = SerializeComplete;
ret_val = true;
}
if (status == BEBlocked && !be_block) {
if (barrierInst) {
status = SerializeBlocked;
} else {
status = Running;
}
ret_val = true;
}
return ret_val;
}
template <class Impl>
void
FrontEnd<Impl>::checkBE()
{
bool be_block = cpu->decoupledFrontEnd ? false : backEnd->isBlocked();
if (be_block) {
if (status == Running || status == Idle) {
status = BEBlocked;
}
}
}
template <class Impl>
typename Impl::DynInstPtr
FrontEnd<Impl>::getInstFromCacheline()
{
if (status == SerializeComplete) {
DynInstPtr inst = barrierInst;
status = Running;
barrierInst = NULL;
return inst;
}
InstSeqNum inst_seq;
MachInst inst;
// @todo: Fix this magic number used here to handle word offset (and
// getting rid of PAL bit)
unsigned offset = (PC & cacheBlkMask) & ~3;
// PC of inst is not in this cache block
if (PC >= (cacheBlkPC + cacheBlkSize) || PC < cacheBlkPC || !cacheBlkValid) {
// DPRINTF(OoOCPU, "OoOCPU: PC is not in this cache block\n");
// DPRINTF(OoOCPU, "OoOCPU: PC: %#x, cacheBlkPC: %#x, cacheBlkValid: %i",
// PC, cacheBlkPC, cacheBlkValid);
// panic("Instruction not in cache line or cache line invalid!");
return NULL;
}
//////////////////////////
// Fetch one instruction
//////////////////////////
// Get a sequence number.
inst_seq = getAndIncrementInstSeq();
// Make sure this is a valid index.
assert(offset <= cacheBlkSize - sizeof(MachInst));
// Get the instruction from the array of the cache line.
inst = htog(*reinterpret_cast<MachInst *>(&cacheData[offset]));
ExtMachInst decode_inst = TheISA::makeExtMI(inst, PC);
// Create a new DynInst from the instruction fetched.
DynInstPtr instruction = new DynInst(decode_inst, PC, PC+sizeof(MachInst),
inst_seq, cpu);
instruction->setState(thread);
DPRINTF(FE, "Instruction [sn:%lli] created, with PC %#x\n%s\n",
inst_seq, instruction->readPC(),
instruction->staticInst->disassemble(PC));
instruction->traceData =
Trace::getInstRecord(curTick, xc, cpu,
instruction->staticInst,
instruction->readPC(), 0);
// Increment stat of fetched instructions.
++fetchedInsts;
return instruction;
}
template <class Impl>
void
FrontEnd<Impl>::renameInst(DynInstPtr &inst)
{
DynInstPtr src_inst = NULL;
int num_src_regs = inst->numSrcRegs();
if (num_src_regs == 0) {
inst->setCanIssue();
} else {
for (int i = 0; i < num_src_regs; ++i) {
src_inst = renameTable[inst->srcRegIdx(i)];
inst->setSrcInst(src_inst, i);
DPRINTF(FE, "[sn:%lli]: Src reg %i is inst [sn:%lli]\n",
inst->seqNum, (int)inst->srcRegIdx(i), src_inst->seqNum);
if (src_inst->isCompleted()) {
DPRINTF(FE, "Reg ready.\n");
inst->markSrcRegReady(i);
} else {
DPRINTF(FE, "Adding to dependent list.\n");
src_inst->addDependent(inst);
}
}
}
for (int i = 0; i < inst->numDestRegs(); ++i) {
RegIndex idx = inst->destRegIdx(i);
DPRINTF(FE, "Dest reg %i is now inst [sn:%lli], was previously "
"[sn:%lli]\n",
(int)inst->destRegIdx(i), inst->seqNum,
renameTable[idx]->seqNum);
inst->setPrevDestInst(renameTable[idx], i);
renameTable[idx] = inst;
--freeRegs;
}
}
template <class Impl>
void
FrontEnd<Impl>::dumpInsts()
{
cprintf("instBuffer size: %i\n", instBuffer.size());
InstBuffIt buff_it = instBuffer.begin();
for (int num = 0; buff_it != instBuffer.end(); num++) {
cprintf("Instruction:%i\nPC:%#x\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
"Squashed:%i\n\n",
num, (*buff_it)->readPC(), (*buff_it)->threadNumber,
(*buff_it)->seqNum, (*buff_it)->isIssued(),
(*buff_it)->isSquashed());
buff_it++;
}
}
template <class Impl>
FrontEnd<Impl>::ICacheCompletionEvent::ICacheCompletionEvent(FrontEnd *fe)
: Event(&mainEventQueue, Delayed_Writeback_Pri), frontEnd(fe)
{
this->setFlags(Event::AutoDelete);
}
template <class Impl>
void
FrontEnd<Impl>::ICacheCompletionEvent::process()
{
frontEnd->processCacheCompletion();
}
template <class Impl>
const char *
FrontEnd<Impl>::ICacheCompletionEvent::description()
{
return "ICache completion event";
}

View file

@ -0,0 +1,5 @@
#include "cpu/ozone/inorder_back_end_impl.hh"
#include "cpu/ozone/simple_impl.hh"
template class InorderBackEnd<SimpleImpl>;

View file

@ -0,0 +1,417 @@
#ifndef __CPU_OZONE_INORDER_BACK_END_HH__
#define __CPU_OZONE_INORDER_BACK_END_HH__
#include <list>
#include "arch/faults.hh"
#include "base/timebuf.hh"
#include "cpu/exec_context.hh"
#include "cpu/inst_seq.hh"
#include "cpu/ozone/rename_table.hh"
#include "cpu/ozone/thread_state.hh"
#include "mem/mem_interface.hh"
#include "mem/mem_req.hh"
#include "sim/eventq.hh"
template <class Impl>
class InorderBackEnd
{
public:
typedef typename Impl::Params Params;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::FrontEnd FrontEnd;
typedef typename FullCPU::OzoneXC OzoneXC;
typedef typename Impl::FullCPU::CommStruct CommStruct;
InorderBackEnd(Params *params);
std::string name() const;
void setCPU(FullCPU *cpu_ptr)
{ cpu = cpu_ptr; }
void setFrontEnd(FrontEnd *front_end_ptr)
{ frontEnd = front_end_ptr; }
void setCommBuffer(TimeBuffer<CommStruct> *_comm)
{ comm = _comm; }
void setXC(ExecContext *xc_ptr);
void setThreadState(OzoneThreadState<Impl> *thread_ptr);
void regStats() { }
#if FULL_SYSTEM
void checkInterrupts();
#endif
void tick();
void executeInsts();
void squash(const InstSeqNum &squash_num, const Addr &next_PC);
void squashFromXC();
bool robEmpty() { return instList.empty(); }
bool isFull() { return false; }
bool isBlocked() { return status == DcacheMissStoreStall ||
status == DcacheMissLoadStall ||
interruptBlocked; }
void fetchFault(Fault &fault);
void dumpInsts();
private:
void handleFault();
void setSquashInfoFromXC();
bool squashPending;
InstSeqNum squashSeqNum;
Addr squashNextPC;
Fault faultFromFetch;
bool interruptBlocked;
public:
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx);
Addr readCommitPC() { return commitPC; }
Addr commitPC;
public:
FullCPU *cpu;
FrontEnd *frontEnd;
ExecContext *xc;
OzoneThreadState<Impl> *thread;
RenameTable<Impl> renameTable;
protected:
enum Status {
Running,
Idle,
DcacheMissLoadStall,
DcacheMissStoreStall,
DcacheMissComplete,
Blocked
};
Status status;
class DCacheCompletionEvent : public Event
{
private:
InorderBackEnd *be;
public:
DCacheCompletionEvent(InorderBackEnd *_be);
virtual void process();
virtual const char *description();
DynInstPtr inst;
};
friend class DCacheCompletionEvent;
DCacheCompletionEvent cacheCompletionEvent;
MemInterface *dcacheInterface;
MemReqPtr memReq;
private:
typedef typename std::list<DynInstPtr>::iterator InstListIt;
std::list<DynInstPtr> instList;
// General back end width. Used if the more specific isn't given.
int width;
int latency;
int squashLatency;
TimeBuffer<int> numInstsToWB;
TimeBuffer<int>::wire instsAdded;
TimeBuffer<int>::wire instsToExecute;
TimeBuffer<CommStruct> *comm;
// number of cycles stalled for D-cache misses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
};
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::read(Addr addr, T &data, unsigned flags)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = cpu->translateDataReadReq(memReq);
// if we have a cache, do cache access too
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT) {
// Fix this hack for keeping funcExeInst correct with loads that
// are executed twice.
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
status = DcacheMissLoadStall;
DPRINTF(IBE, "Dcache miss stall!\n");
} else {
// do functional access
DPRINTF(IBE, "Dcache hit!\n");
}
}
/*
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Read");
*/
return fault;
}
#if 0
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::read(MemReqPtr &req, T &data)
{
#if FULL_SYSTEM && defined(TARGET_ALPHA)
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
Fault error;
error = thread->mem->read(req, data);
data = LittleEndianGuest::gtoh(data);
return error;
}
#endif
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = cpu->translateDataWriteReq(memReq);
if (fault == NoFault && dcacheInterface) {
memReq->cmd = Write;
// memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT) {
memReq->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
status = DcacheMissStoreStall;
DPRINTF(IBE, "Dcache miss stall!\n");
} else {
DPRINTF(IBE, "Dcache hit!\n");
}
}
if (res && (fault == NoFault))
*res = memReq->result;
/*
if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
recordEvent("Uncached Write");
*/
return fault;
}
#if 0
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::write(MemReqPtr &req, T &data)
{
#if FULL_SYSTEM && defined(TARGET_ALPHA)
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < cpu->system->execContexts.size(); i++){
xc = cpu->system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
return thread->mem->write(req, (T)LittleEndianGuest::htog(data));
}
#endif
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::read(MemReqPtr &req, T &data, int load_idx)
{
// panic("Unimplemented!");
// memReq->reset(addr, sizeof(T), flags);
// translate to physical address
// Fault fault = cpu->translateDataReadReq(req);
// if we have a cache, do cache access too
if (dcacheInterface) {
req->cmd = Read;
req->completionEvent = NULL;
req->data = new uint8_t[64];
req->time = curTick;
req->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(req);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT) {
req->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
status = DcacheMissLoadStall;
DPRINTF(IBE, "Dcache miss load stall!\n");
} else {
DPRINTF(IBE, "Dcache hit!\n");
}
}
/*
if (!dcacheInterface && (req->flags & UNCACHEABLE))
recordEvent("Uncached Read");
*/
return NoFault;
}
template <class Impl>
template <class T>
Fault
InorderBackEnd<Impl>::write(MemReqPtr &req, T &data, int store_idx)
{
// req->reset(addr, sizeof(T), flags);
// translate to physical address
// Fault fault = cpu->translateDataWriteReq(req);
if (dcacheInterface) {
req->cmd = Write;
req->data = new uint8_t[64];
memcpy(req->data,(uint8_t *)&data,req->size);
req->completionEvent = NULL;
req->time = curTick;
req->flags &= ~INST_READ;
MemAccessResult result = dcacheInterface->access(req);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT) {
req->completionEvent = &cacheCompletionEvent;
lastDcacheStall = curTick;
// unscheduleTickEvent();
status = DcacheMissStoreStall;
DPRINTF(IBE, "Dcache miss store stall!\n");
} else {
DPRINTF(IBE, "Dcache hit!\n");
}
}
if (req->flags & LOCKED) {
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
} else {
req->result = 1;
}
}
/*
if (res && (fault == NoFault))
*res = req->result;
*/
/*
if (!dcacheInterface && (req->flags & UNCACHEABLE))
recordEvent("Uncached Write");
*/
return NoFault;
}
#endif // __CPU_OZONE_INORDER_BACK_END_HH__

View file

@ -0,0 +1,519 @@
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "cpu/ozone/inorder_back_end.hh"
#include "cpu/ozone/thread_state.hh"
using namespace TheISA;
template <class Impl>
InorderBackEnd<Impl>::InorderBackEnd(Params *params)
: squashPending(false),
squashSeqNum(0),
squashNextPC(0),
faultFromFetch(NoFault),
interruptBlocked(false),
cacheCompletionEvent(this),
dcacheInterface(params->dcacheInterface),
width(params->backEndWidth),
latency(params->backEndLatency),
squashLatency(params->backEndSquashLatency),
numInstsToWB(0, latency + 1)
{
instsAdded = numInstsToWB.getWire(latency);
instsToExecute = numInstsToWB.getWire(0);
memReq = new MemReq;
memReq->data = new uint8_t[64];
status = Running;
}
template <class Impl>
std::string
InorderBackEnd<Impl>::name() const
{
return cpu->name() + ".inorderbackend";
}
template <class Impl>
void
InorderBackEnd<Impl>::setXC(ExecContext *xc_ptr)
{
xc = xc_ptr;
memReq->xc = xc;
}
template <class Impl>
void
InorderBackEnd<Impl>::setThreadState(OzoneThreadState<Impl> *thread_ptr)
{
thread = thread_ptr;
thread->setFuncExeInst(0);
}
#if FULL_SYSTEM
template <class Impl>
void
InorderBackEnd<Impl>::checkInterrupts()
{
//Check if there are any outstanding interrupts
//Handle the interrupts
int ipl = 0;
int summary = 0;
cpu->checkInterrupts = false;
if (thread->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (thread->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (thread->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpu->intr_status();
if (interrupts) {
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
}
if (ipl && ipl > thread->readMiscReg(IPR_IPLR)) {
thread->inSyscall = true;
thread->setMiscReg(IPR_ISR, summary);
thread->setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xc);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
thread->readMiscReg(IPR_IPLR), ipl, summary);
// May need to go 1 inst prior
squashPending = true;
thread->inSyscall = false;
setSquashInfoFromXC();
}
}
#endif
template <class Impl>
void
InorderBackEnd<Impl>::tick()
{
// Squash due to an external source
// Not sure if this or an interrupt has higher priority
if (squashPending) {
squash(squashSeqNum, squashNextPC);
return;
}
// if (interrupt) then set thread PC, stall front end, record that
// I'm waiting for it to drain. (for now just squash)
#if FULL_SYSTEM
if (interruptBlocked ||
(cpu->checkInterrupts &&
cpu->check_interrupts() &&
!cpu->inPalMode())) {
if (!robEmpty()) {
interruptBlocked = true;
} else if (robEmpty() && cpu->inPalMode()) {
// Will need to let the front end continue a bit until
// we're out of pal mode. Hopefully we never get into an
// infinite loop...
interruptBlocked = false;
} else {
interruptBlocked = false;
checkInterrupts();
return;
}
}
#endif
if (status != DcacheMissLoadStall &&
status != DcacheMissStoreStall) {
for (int i = 0; i < width && (*instsAdded) < width; ++i) {
DynInstPtr inst = frontEnd->getInst();
if (!inst)
break;
instList.push_back(inst);
(*instsAdded)++;
}
#if FULL_SYSTEM
if (faultFromFetch && robEmpty() && frontEnd->isEmpty()) {
handleFault();
} else {
executeInsts();
}
#else
executeInsts();
#endif
}
}
template <class Impl>
void
InorderBackEnd<Impl>::executeInsts()
{
bool completed_last_inst = true;
int insts_to_execute = *instsToExecute;
int freed_regs = 0;
while (insts_to_execute > 0) {
assert(!instList.empty());
DynInstPtr inst = instList.front();
commitPC = inst->readPC();
thread->setPC(commitPC);
thread->setNextPC(inst->readNextPC());
#if FULL_SYSTEM
int count = 0;
Addr oldpc;
do {
if (count == 0)
assert(!thread->inSyscall && !thread->trapPending);
oldpc = thread->readPC();
cpu->system->pcEventQueue.service(
thread->getXCProxy());
count++;
} while (oldpc != thread->readPC());
if (count > 1) {
DPRINTF(IBE, "PC skip function event, stopping commit\n");
completed_last_inst = false;
squashPending = true;
break;
}
#endif
Fault inst_fault = NoFault;
if (status == DcacheMissComplete) {
DPRINTF(IBE, "Completing inst [sn:%lli]\n", inst->seqNum);
status = Running;
} else if (inst->isMemRef() && status != DcacheMissComplete &&
(!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
DPRINTF(IBE, "Initiating mem op inst [sn:%lli] PC: %#x\n",
inst->seqNum, inst->readPC());
cacheCompletionEvent.inst = inst;
inst_fault = inst->initiateAcc();
if (inst_fault == NoFault &&
status != DcacheMissLoadStall &&
status != DcacheMissStoreStall) {
inst_fault = inst->completeAcc();
}
++thread->funcExeInst;
} else {
DPRINTF(IBE, "Executing inst [sn:%lli] PC: %#x\n",
inst->seqNum, inst->readPC());
inst_fault = inst->execute();
++thread->funcExeInst;
}
// Will need to be able to break this loop in case the load
// misses. Split access/complete ops would be useful here
// with writeback events.
if (status == DcacheMissLoadStall) {
*instsToExecute = insts_to_execute;
completed_last_inst = false;
break;
} else if (status == DcacheMissStoreStall) {
// Figure out how to fix this hack. Probably have DcacheMissLoad
// vs DcacheMissStore.
*instsToExecute = insts_to_execute;
completed_last_inst = false;
/*
instList.pop_front();
--insts_to_execute;
if (inst->traceData) {
inst->traceData->finalize();
}
*/
// Don't really need to stop for a store stall as long as
// the memory system is able to handle store forwarding
// and such. Breaking out might help avoid the cache
// interface becoming blocked.
break;
}
inst->setExecuted();
inst->setCompleted();
inst->setCanCommit();
instList.pop_front();
--insts_to_execute;
--(*instsToExecute);
if (inst->traceData) {
inst->traceData->finalize();
inst->traceData = NULL;
}
if (inst_fault != NoFault) {
#if FULL_SYSTEM
DPRINTF(IBE, "Inst [sn:%lli] PC %#x has a fault\n",
inst->seqNum, inst->readPC());
assert(!thread->inSyscall);
thread->inSyscall = true;
// Hack for now; DTB will sometimes need the machine instruction
// for when faults happen. So we will set it here, prior to the
// DTB possibly needing it for this translation.
thread->setInst(
static_cast<TheISA::MachInst>(inst->staticInst->machInst));
// Consider holding onto the trap and waiting until the trap event
// happens for this to be executed.
inst_fault->invoke(xc);
// Exit state update mode to avoid accidental updating.
thread->inSyscall = false;
squashPending = true;
// Generate trap squash event.
// generateTrapEvent(tid);
completed_last_inst = false;
break;
#else // !FULL_SYSTEM
panic("fault (%d) detected @ PC %08p", inst_fault,
inst->PC);
#endif // FULL_SYSTEM
}
for (int i = 0; i < inst->numDestRegs(); ++i) {
renameTable[inst->destRegIdx(i)] = inst;
thread->renameTable[inst->destRegIdx(i)] = inst;
++freed_regs;
}
inst->clearDependents();
comm->access(0)->doneSeqNum = inst->seqNum;
if (inst->mispredicted()) {
squash(inst->seqNum, inst->readNextPC());
thread->setNextPC(inst->readNextPC());
break;
} else if (squashPending) {
// Something external happened that caused the CPU to squash.
// Break out of commit and handle the squash next cycle.
break;
}
// If it didn't mispredict, then it executed fine. Send back its
// registers and BP info? What about insts that may still have
// latency, like loads? Probably can send back the information after
// it is completed.
// keep an instruction count
cpu->numInst++;
thread->numInsts++;
}
frontEnd->addFreeRegs(freed_regs);
assert(insts_to_execute >= 0);
// Should only advance this if I have executed all instructions.
if (insts_to_execute == 0) {
numInstsToWB.advance();
}
// Should I set the PC to the next PC here? What do I set next PC to?
if (completed_last_inst) {
thread->setPC(thread->readNextPC());
thread->setNextPC(thread->readPC() + sizeof(MachInst));
}
if (squashPending) {
setSquashInfoFromXC();
}
}
template <class Impl>
void
InorderBackEnd<Impl>::handleFault()
{
DPRINTF(Commit, "Handling fault from fetch\n");
assert(!thread->inSyscall);
thread->inSyscall = true;
// Consider holding onto the trap and waiting until the trap event
// happens for this to be executed.
faultFromFetch->invoke(xc);
// Exit state update mode to avoid accidental updating.
thread->inSyscall = false;
squashPending = true;
setSquashInfoFromXC();
}
template <class Impl>
void
InorderBackEnd<Impl>::squash(const InstSeqNum &squash_num, const Addr &next_PC)
{
DPRINTF(IBE, "Squashing from [sn:%lli], setting PC to %#x\n",
squash_num, next_PC);
InstListIt squash_it = --(instList.end());
int freed_regs = 0;
while (!instList.empty() && (*squash_it)->seqNum > squash_num) {
DynInstPtr inst = *squash_it;
DPRINTF(IBE, "Squashing instruction PC %#x, [sn:%lli].\n",
inst->readPC(),
inst->seqNum);
// May cause problems with misc regs
freed_regs+= inst->numDestRegs();
inst->clearDependents();
squash_it--;
instList.pop_back();
}
frontEnd->addFreeRegs(freed_regs);
for (int i = 0; i < latency+1; ++i) {
numInstsToWB.advance();
}
squashPending = false;
// Probably want to make sure that this squash is the one that set the
// thread into inSyscall mode.
thread->inSyscall = false;
// Tell front end to squash, reset PC to new one.
frontEnd->squash(squash_num, next_PC);
faultFromFetch = NULL;
}
template <class Impl>
void
InorderBackEnd<Impl>::squashFromXC()
{
// Record that I need to squash
squashPending = true;
thread->inSyscall = true;
}
template <class Impl>
void
InorderBackEnd<Impl>::setSquashInfoFromXC()
{
// Need to handle the case of the instList being empty. In that case
// probably any number works, except maybe with stores in the store buffer.
squashSeqNum = instList.empty() ? 0 : instList.front()->seqNum - 1;
squashNextPC = thread->PC;
}
template <class Impl>
void
InorderBackEnd<Impl>::fetchFault(Fault &fault)
{
faultFromFetch = fault;
}
template <class Impl>
void
InorderBackEnd<Impl>::dumpInsts()
{
int num = 0;
int valid_num = 0;
InstListIt inst_list_it = instList.begin();
cprintf("Inst list size: %i\n", instList.size());
while (inst_list_it != instList.end())
{
cprintf("Instruction:%i\n",
num);
if (!(*inst_list_it)->isSquashed()) {
if (!(*inst_list_it)->isIssued()) {
++valid_num;
cprintf("Count:%i\n", valid_num);
} else if ((*inst_list_it)->isMemRef() &&
!(*inst_list_it)->memOpDone) {
// Loads that have not been marked as executed still count
// towards the total instructions.
++valid_num;
cprintf("Count:%i\n", valid_num);
}
}
cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Issued:%i\nSquashed:%i\n",
(*inst_list_it)->readPC(),
(*inst_list_it)->seqNum,
(*inst_list_it)->threadNumber,
(*inst_list_it)->isIssued(),
(*inst_list_it)->isSquashed());
if ((*inst_list_it)->isMemRef()) {
cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
}
cprintf("\n");
inst_list_it++;
++num;
}
}
template <class Impl>
InorderBackEnd<Impl>::DCacheCompletionEvent::DCacheCompletionEvent(
InorderBackEnd *_be)
: Event(&mainEventQueue, CPU_Tick_Pri), be(_be)
{
// this->setFlags(Event::AutoDelete);
}
template <class Impl>
void
InorderBackEnd<Impl>::DCacheCompletionEvent::process()
{
inst->completeAcc();
be->status = DcacheMissComplete;
}
template <class Impl>
const char *
InorderBackEnd<Impl>::DCacheCompletionEvent::description()
{
return "DCache completion event";
}

36
cpu/ozone/inst_queue.cc Normal file
View file

@ -0,0 +1,36 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
#include "cpu/ozone/inst_queue_impl.hh"
// Force instantiation of InstructionQueue.
template class InstQueue<SimpleImpl>;
template class InstQueue<OzoneImpl>;

506
cpu/ozone/inst_queue.hh Normal file
View file

@ -0,0 +1,506 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_INST_QUEUE_HH__
#define __CPU_OZONE_INST_QUEUE_HH__
#include <list>
#include <map>
#include <queue>
#include <vector>
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "cpu/inst_seq.hh"
#include "sim/host.hh"
class FUPool;
class MemInterface;
/**
* A standard instruction queue class. It holds ready instructions, in
* order, in seperate priority queues to facilitate the scheduling of
* instructions. The IQ uses a separate linked list to track dependencies.
* Similar to the rename map and the free list, it expects that
* floating point registers have their indices start after the integer
* registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
* and 96-191 are fp). This remains true even for both logical and
* physical register indices. The IQ depends on the memory dependence unit to
* track when memory operations are ready in terms of ordering; register
* dependencies are tracked normally. Right now the IQ also handles the
* execution timing; this is mainly to allow back-to-back scheduling without
* requiring IEW to be able to peek into the IQ. At the end of the execution
* latency, the instruction is put into the queue to execute, where it will
* have the execute() function called on it.
* @todo: Make IQ able to handle multiple FU pools.
*/
template <class Impl>
class InstQueue
{
public:
//Typedefs from the Impl.
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::Params Params;
typedef typename Impl::IssueStruct IssueStruct;
/*
typedef typename Impl::CPUPol::IEW IEW;
typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
typedef typename Impl::CPUPol::IssueStruct IssueStruct;
typedef typename Impl::CPUPol::TimeStruct TimeStruct;
*/
// Typedef of iterator through the list of instructions.
typedef typename std::list<DynInstPtr>::iterator ListIt;
friend class Impl::FullCPU;
#if 0
/** FU completion event class. */
class FUCompletion : public Event {
private:
/** Executing instruction. */
DynInstPtr inst;
/** Index of the FU used for executing. */
int fuIdx;
/** Pointer back to the instruction queue. */
InstQueue<Impl> *iqPtr;
public:
/** Construct a FU completion event. */
FUCompletion(DynInstPtr &_inst, int fu_idx,
InstQueue<Impl> *iq_ptr);
virtual void process();
virtual const char *description();
};
#endif
/** Constructs an IQ. */
InstQueue(Params *params);
/** Destructs the IQ. */
~InstQueue();
/** Returns the name of the IQ. */
std::string name() const;
/** Registers statistics. */
void regStats();
/** Sets CPU pointer. */
void setCPU(FullCPU *_cpu) { cpu = _cpu; }
#if 0
/** Sets active threads list. */
void setActiveThreads(list<unsigned> *at_ptr);
/** Sets the IEW pointer. */
void setIEW(IEW *iew_ptr) { iewStage = iew_ptr; }
#endif
/** Sets the timer buffer between issue and execute. */
void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
#if 0
/** Sets the global time buffer. */
void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
/** Number of entries needed for given amount of threads. */
int entryAmount(int num_threads);
/** Resets max entries for all threads. */
void resetEntries();
#endif
/** Returns total number of free entries. */
unsigned numFreeEntries();
/** Returns number of free entries for a thread. */
unsigned numFreeEntries(unsigned tid);
/** Returns whether or not the IQ is full. */
bool isFull();
/** Returns whether or not the IQ is full for a specific thread. */
bool isFull(unsigned tid);
/** Returns if there are any ready instructions in the IQ. */
bool hasReadyInsts();
/** Inserts a new instruction into the IQ. */
void insert(DynInstPtr &new_inst);
/** Inserts a new, non-speculative instruction into the IQ. */
void insertNonSpec(DynInstPtr &new_inst);
#if 0
/**
* Advances the tail of the IQ, used if an instruction is not added to the
* IQ for scheduling.
* @todo: Rename this function.
*/
void advanceTail(DynInstPtr &inst);
/** Process FU completion event. */
void processFUCompletion(DynInstPtr &inst, int fu_idx);
#endif
/**
* Schedules ready instructions, adding the ready ones (oldest first) to
* the queue to execute.
*/
void scheduleReadyInsts();
/** Schedules a single specific non-speculative instruction. */
void scheduleNonSpec(const InstSeqNum &inst);
/**
* Commits all instructions up to and including the given sequence number,
* for a specific thread.
*/
void commit(const InstSeqNum &inst, unsigned tid = 0);
/** Wakes all dependents of a completed instruction. */
void wakeDependents(DynInstPtr &completed_inst);
/** Adds a ready memory instruction to the ready list. */
void addReadyMemInst(DynInstPtr &ready_inst);
#if 0
/**
* Reschedules a memory instruction. It will be ready to issue once
* replayMemInst() is called.
*/
void rescheduleMemInst(DynInstPtr &resched_inst);
/** Replays a memory instruction. It must be rescheduled first. */
void replayMemInst(DynInstPtr &replay_inst);
#endif
/** Completes a memory operation. */
void completeMemInst(DynInstPtr &completed_inst);
#if 0
/** Indicates an ordering violation between a store and a load. */
void violation(DynInstPtr &store, DynInstPtr &faulting_load);
#endif
/**
* Squashes instructions for a thread. Squashing information is obtained
* from the time buffer.
*/
void squash(unsigned tid); // Probably want the ISN
/** Returns the number of used entries for a thread. */
unsigned getCount(unsigned tid) { return count[tid]; };
/** Updates the number of free entries. */
void updateFreeEntries(int num) { freeEntries += num; }
/** Debug function to print all instructions. */
void printInsts();
private:
/** Does the actual squashing. */
void doSquash(unsigned tid);
/////////////////////////
// Various pointers
/////////////////////////
/** Pointer to the CPU. */
FullCPU *cpu;
/** Cache interface. */
MemInterface *dcacheInterface;
#if 0
/** Pointer to IEW stage. */
IEW *iewStage;
/** The memory dependence unit, which tracks/predicts memory dependences
* between instructions.
*/
MemDepUnit memDepUnit[Impl::MaxThreads];
#endif
/** The queue to the execute stage. Issued instructions will be written
* into it.
*/
TimeBuffer<IssueStruct> *issueToExecuteQueue;
#if 0
/** The backwards time buffer. */
TimeBuffer<TimeStruct> *timeBuffer;
/** Wire to read information from timebuffer. */
typename TimeBuffer<TimeStruct>::wire fromCommit;
/** Function unit pool. */
FUPool *fuPool;
#endif
//////////////////////////////////////
// Instruction lists, ready queues, and ordering
//////////////////////////////////////
/** List of all the instructions in the IQ (some of which may be issued). */
std::list<DynInstPtr> instList[Impl::MaxThreads];
/**
* Struct for comparing entries to be added to the priority queue. This
* gives reverse ordering to the instructions in terms of sequence
* numbers: the instructions with smaller sequence numbers (and hence
* are older) will be at the top of the priority queue.
*/
struct pqCompare {
bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
{
return lhs->seqNum > rhs->seqNum;
}
};
/**
* Struct for an IQ entry. It includes the instruction and an iterator
* to the instruction's spot in the IQ.
*/
struct IQEntry {
DynInstPtr inst;
ListIt iqIt;
};
typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare>
ReadyInstQueue;
typedef std::map<DynInstPtr, pqCompare> ReadyInstMap;
typedef typename std::map<DynInstPtr, pqCompare>::iterator ReadyMapIt;
/** List of ready instructions.
*/
ReadyInstQueue readyInsts;
/** List of non-speculative instructions that will be scheduled
* once the IQ gets a signal from commit. While it's redundant to
* have the key be a part of the value (the sequence number is stored
* inside of DynInst), when these instructions are woken up only
* the sequence number will be available. Thus it is most efficient to be
* able to search by the sequence number alone.
*/
std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt;
#if 0
/** Entry for the list age ordering by op class. */
struct ListOrderEntry {
OpClass queueType;
InstSeqNum oldestInst;
};
/** List that contains the age order of the oldest instruction of each
* ready queue. Used to select the oldest instruction available
* among op classes.
*/
std::list<ListOrderEntry> listOrder;
typedef typename std::list<ListOrderEntry>::iterator ListOrderIt;
/** Tracks if each ready queue is on the age order list. */
bool queueOnList[Num_OpClasses];
/** Iterators of each ready queue. Points to their spot in the age order
* list.
*/
ListOrderIt readyIt[Num_OpClasses];
/** Add an op class to the age order list. */
void addToOrderList(OpClass op_class);
/**
* Called when the oldest instruction has been removed from a ready queue;
* this places that ready queue into the proper spot in the age order list.
*/
void moveToYoungerInst(ListOrderIt age_order_it);
#endif
//////////////////////////////////////
// Various parameters
//////////////////////////////////////
#if 0
/** IQ Resource Sharing Policy */
enum IQPolicy {
Dynamic,
Partitioned,
Threshold
};
/** IQ sharing policy for SMT. */
IQPolicy iqPolicy;
#endif
/** Number of Total Threads*/
unsigned numThreads;
#if 0
/** Pointer to list of active threads. */
list<unsigned> *activeThreads;
#endif
/** Per Thread IQ count */
unsigned count[Impl::MaxThreads];
/** Max IQ Entries Per Thread */
unsigned maxEntries[Impl::MaxThreads];
/** Number of free IQ entries left. */
unsigned freeEntries;
/** The number of entries in the instruction queue. */
unsigned numEntries;
/** The total number of instructions that can be issued in one cycle. */
unsigned totalWidth;
#if 0
/** The number of physical registers in the CPU. */
unsigned numPhysRegs;
/** The number of physical integer registers in the CPU. */
unsigned numPhysIntRegs;
/** The number of floating point registers in the CPU. */
unsigned numPhysFloatRegs;
#endif
/** Delay between commit stage and the IQ.
* @todo: Make there be a distinction between the delays within IEW.
*/
unsigned commitToIEWDelay;
//////////////////////////////////
// Variables needed for squashing
//////////////////////////////////
/** The sequence number of the squashed instruction. */
InstSeqNum squashedSeqNum[Impl::MaxThreads];
/** Iterator that points to the last instruction that has been squashed.
* This will not be valid unless the IQ is in the process of squashing.
*/
ListIt squashIt[Impl::MaxThreads];
#if 0
///////////////////////////////////
// Dependency graph stuff
///////////////////////////////////
class DependencyEntry
{
public:
DependencyEntry()
: inst(NULL), next(NULL)
{ }
DynInstPtr inst;
//Might want to include data about what arch. register the
//dependence is waiting on.
DependencyEntry *next;
//This function, and perhaps this whole class, stand out a little
//bit as they don't fit a classification well. I want access
//to the underlying structure of the linked list, yet at
//the same time it feels like this should be something abstracted
//away. So for now it will sit here, within the IQ, until
//a better implementation is decided upon.
// This function probably shouldn't be within the entry...
void insert(DynInstPtr &new_inst);
void remove(DynInstPtr &inst_to_remove);
// Debug variable, remove when done testing.
static unsigned mem_alloc_counter;
};
/** Array of linked lists. Each linked list is a list of all the
* instructions that depend upon a given register. The actual
* register's index is used to index into the graph; ie all
* instructions in flight that are dependent upon r34 will be
* in the linked list of dependGraph[34].
*/
DependencyEntry *dependGraph;
/** A cache of the recently woken registers. It is 1 if the register
* has been woken up recently, and 0 if the register has been added
* to the dependency graph and has not yet received its value. It
* is basically a secondary scoreboard, and should pretty much mirror
* the scoreboard that exists in the rename map.
*/
vector<bool> regScoreboard;
/** Adds an instruction to the dependency graph, as a producer. */
bool addToDependents(DynInstPtr &new_inst);
/** Adds an instruction to the dependency graph, as a consumer. */
void createDependency(DynInstPtr &new_inst);
#endif
/** Moves an instruction to the ready queue if it is ready. */
void addIfReady(DynInstPtr &inst);
/** Debugging function to count how many entries are in the IQ. It does
* a linear walk through the instructions, so do not call this function
* during normal execution.
*/
int countInsts();
#if 0
/** Debugging function to dump out the dependency graph.
*/
void dumpDependGraph();
#endif
/** Debugging function to dump all the list sizes, as well as print
* out the list of nonspeculative instructions. Should not be used
* in any other capacity, but it has no harmful sideaffects.
*/
void dumpLists();
/** Debugging function to dump out all instructions that are in the
* IQ.
*/
void dumpInsts();
/** Stat for number of instructions added. */
Stats::Scalar<> iqInstsAdded;
/** Stat for number of non-speculative instructions added. */
Stats::Scalar<> iqNonSpecInstsAdded;
// Stats::Scalar<> iqIntInstsAdded;
/** Stat for number of integer instructions issued. */
Stats::Scalar<> iqIntInstsIssued;
// Stats::Scalar<> iqFloatInstsAdded;
/** Stat for number of floating point instructions issued. */
Stats::Scalar<> iqFloatInstsIssued;
// Stats::Scalar<> iqBranchInstsAdded;
/** Stat for number of branch instructions issued. */
Stats::Scalar<> iqBranchInstsIssued;
// Stats::Scalar<> iqMemInstsAdded;
/** Stat for number of memory instructions issued. */
Stats::Scalar<> iqMemInstsIssued;
// Stats::Scalar<> iqMiscInstsAdded;
/** Stat for number of miscellaneous instructions issued. */
Stats::Scalar<> iqMiscInstsIssued;
/** Stat for number of squashed instructions that were ready to issue. */
Stats::Scalar<> iqSquashedInstsIssued;
/** Stat for number of squashed instructions examined when squashing. */
Stats::Scalar<> iqSquashedInstsExamined;
/** Stat for number of squashed instruction operands examined when
* squashing.
*/
Stats::Scalar<> iqSquashedOperandsExamined;
/** Stat for number of non-speculative instructions removed due to a squash.
*/
Stats::Scalar<> iqSquashedNonSpecRemoved;
};
#endif //__CPU_OZONE_INST_QUEUE_HH__

1341
cpu/ozone/inst_queue_impl.hh Normal file

File diff suppressed because it is too large Load diff

34
cpu/ozone/lsq_unit.cc Normal file
View file

@ -0,0 +1,34 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/lsq_unit_impl.hh"
// Force the instantiation of LDSTQ for all the implementations we care about.
template class OzoneLSQ<OzoneImpl>;

632
cpu/ozone/lsq_unit.hh Normal file
View file

@ -0,0 +1,632 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_LSQ_UNIT_HH__
#define __CPU_OZONE_LSQ_UNIT_HH__
#include <map>
#include <queue>
#include <algorithm>
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "base/hashmap.hh"
#include "cpu/inst_seq.hh"
#include "mem/mem_interface.hh"
//#include "mem/page_table.hh"
#include "sim/sim_object.hh"
class PageTable;
/**
* Class that implements the actual LQ and SQ for each specific thread.
* Both are circular queues; load entries are freed upon committing, while
* store entries are freed once they writeback. The LSQUnit tracks if there
* are memory ordering violations, and also detects partial load to store
* forwarding cases (a store only has part of a load's data) that requires
* the load to wait until the store writes back. In the former case it
* holds onto the instruction until the dependence unit looks at it, and
* in the latter it stalls the LSQ until the store writes back. At that
* point the load is replayed.
*/
template <class Impl>
class OzoneLSQ {
public:
typedef typename Impl::Params Params;
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::BackEnd BackEnd;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::IssueStruct IssueStruct;
typedef TheISA::IntReg IntReg;
typedef typename std::map<InstSeqNum, DynInstPtr>::iterator LdMapIt;
private:
class StoreCompletionEvent : public Event {
public:
/** Constructs a store completion event. */
StoreCompletionEvent(int store_idx, Event *wb_event, OzoneLSQ *lsq_ptr);
/** Processes the store completion event. */
void process();
/** Returns the description of this event. */
const char *description();
private:
/** The store index of the store being written back. */
int storeIdx;
/** The writeback event for the store. Needed for store
* conditionals.
*/
Event *wbEvent;
/** The pointer to the LSQ unit that issued the store. */
OzoneLSQ<Impl> *lsqPtr;
};
friend class StoreCompletionEvent;
public:
/** Constructs an LSQ unit. init() must be called prior to use. */
OzoneLSQ();
/** Initializes the LSQ unit with the specified number of entries. */
void init(Params *params, unsigned maxLQEntries,
unsigned maxSQEntries, unsigned id);
/** Returns the name of the LSQ unit. */
std::string name() const;
/** Sets the CPU pointer. */
void setCPU(FullCPU *cpu_ptr)
{ cpu = cpu_ptr; }
/** Sets the back-end stage pointer. */
void setBE(BackEnd *be_ptr)
{ be = be_ptr; }
/** Sets the page table pointer. */
void setPageTable(PageTable *pt_ptr);
/** Ticks the LSQ unit, which in this case only resets the number of
* used cache ports.
* @todo: Move the number of used ports up to the LSQ level so it can
* be shared by all LSQ units.
*/
void tick() { usedPorts = 0; }
/** Inserts an instruction. */
void insert(DynInstPtr &inst);
/** Inserts a load instruction. */
void insertLoad(DynInstPtr &load_inst);
/** Inserts a store instruction. */
void insertStore(DynInstPtr &store_inst);
/** Executes a load instruction. */
Fault executeLoad(DynInstPtr &inst);
Fault executeLoad(int lq_idx);
/** Executes a store instruction. */
Fault executeStore(DynInstPtr &inst);
/** Commits the head load. */
void commitLoad();
/** Commits a specific load, given by the sequence number. */
void commitLoad(InstSeqNum &inst);
/** Commits loads older than a specific sequence number. */
void commitLoads(InstSeqNum &youngest_inst);
/** Commits stores older than a specific sequence number. */
void commitStores(InstSeqNum &youngest_inst);
/** Writes back stores. */
void writebackStores();
// @todo: Include stats in the LSQ unit.
//void regStats();
/** Clears all the entries in the LQ. */
void clearLQ();
/** Clears all the entries in the SQ. */
void clearSQ();
/** Resizes the LQ to a given size. */
void resizeLQ(unsigned size);
/** Resizes the SQ to a given size. */
void resizeSQ(unsigned size);
/** Squashes all instructions younger than a specific sequence number. */
void squash(const InstSeqNum &squashed_num);
/** Returns if there is a memory ordering violation. Value is reset upon
* call to getMemDepViolator().
*/
bool violation() { return memDepViolator; }
/** Returns the memory ordering violator. */
DynInstPtr getMemDepViolator();
/** Returns if a load became blocked due to the memory system. It clears
* the bool's value upon this being called.
*/
inline bool loadBlocked();
/** Returns the number of free entries (min of free LQ and SQ entries). */
unsigned numFreeEntries();
/** Returns the number of loads ready to execute. */
int numLoadsReady();
/** Returns the number of loads in the LQ. */
int numLoads() { return loads; }
/** Returns the number of stores in the SQ. */
int numStores() { return stores; }
/** Returns if either the LQ or SQ is full. */
bool isFull() { return lqFull() || sqFull(); }
/** Returns if the LQ is full. */
bool lqFull() { return loads >= (LQEntries - 1); }
/** Returns if the SQ is full. */
bool sqFull() { return stores >= (SQEntries - 1); }
/** Debugging function to dump instructions in the LSQ. */
void dumpInsts();
/** Returns the number of instructions in the LSQ. */
unsigned getCount() { return loads + stores; }
/** Returns if there are any stores to writeback. */
bool hasStoresToWB() { return storesToWB; }
/** Returns the number of stores to writeback. */
int numStoresToWB() { return storesToWB; }
/** Returns if the LSQ unit will writeback on this cycle. */
bool willWB() { return storeQueue[storeWBIdx].canWB &&
!storeQueue[storeWBIdx].completed &&
!dcacheInterface->isBlocked(); }
private:
/** Completes the store at the specified index. */
void completeStore(int store_idx);
/** Increments the given store index (circular queue). */
inline void incrStIdx(int &store_idx);
/** Decrements the given store index (circular queue). */
inline void decrStIdx(int &store_idx);
/** Increments the given load index (circular queue). */
inline void incrLdIdx(int &load_idx);
/** Decrements the given load index (circular queue). */
inline void decrLdIdx(int &load_idx);
private:
/** Pointer to the CPU. */
FullCPU *cpu;
/** Pointer to the back-end stage. */
BackEnd *be;
/** Pointer to the D-cache. */
MemInterface *dcacheInterface;
/** Pointer to the page table. */
PageTable *pTable;
public:
struct SQEntry {
/** Constructs an empty store queue entry. */
SQEntry()
: inst(NULL), req(NULL), size(0), data(0),
canWB(0), committed(0), completed(0)
{ }
/** Constructs a store queue entry for a given instruction. */
SQEntry(DynInstPtr &_inst)
: inst(_inst), req(NULL), size(0), data(0),
canWB(0), committed(0), completed(0)
{ }
/** The store instruction. */
DynInstPtr inst;
/** The memory request for the store. */
MemReqPtr req;
/** The size of the store. */
int size;
/** The store data. */
IntReg data;
/** Whether or not the store can writeback. */
bool canWB;
/** Whether or not the store is committed. */
bool committed;
/** Whether or not the store is completed. */
bool completed;
};
enum Status {
Running,
Idle,
DcacheMissStall,
DcacheMissSwitch
};
private:
/** The OzoneLSQ thread id. */
unsigned lsqID;
/** The status of the LSQ unit. */
Status _status;
/** The store queue. */
std::vector<SQEntry> storeQueue;
/** The load queue. */
std::vector<DynInstPtr> loadQueue;
// Consider making these 16 bits
/** The number of LQ entries. */
unsigned LQEntries;
/** The number of SQ entries. */
unsigned SQEntries;
/** The number of load instructions in the LQ. */
int loads;
/** The number of store instructions in the SQ (excludes those waiting to
* writeback).
*/
int stores;
/** The number of store instructions in the SQ waiting to writeback. */
int storesToWB;
/** The index of the head instruction in the LQ. */
int loadHead;
/** The index of the tail instruction in the LQ. */
int loadTail;
/** The index of the head instruction in the SQ. */
int storeHead;
/** The index of the first instruction that is ready to be written back,
* and has not yet been written back.
*/
int storeWBIdx;
/** The index of the tail instruction in the SQ. */
int storeTail;
/// @todo Consider moving to a more advanced model with write vs read ports
/** The number of cache ports available each cycle. */
int cachePorts;
/** The number of used cache ports in this cycle. */
int usedPorts;
//list<InstSeqNum> mshrSeqNums;
//Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
/** Wire to read information from the issue stage time queue. */
typename TimeBuffer<IssueStruct>::wire fromIssue;
// Make these per thread?
/** Whether or not the LSQ is stalled. */
bool stalled;
/** The store that causes the stall due to partial store to load
* forwarding.
*/
InstSeqNum stallingStoreIsn;
/** The index of the above store. */
int stallingLoadIdx;
/** Whether or not a load is blocked due to the memory system. It is
* cleared when this value is checked via loadBlocked().
*/
bool isLoadBlocked;
/** The oldest faulting load instruction. */
DynInstPtr loadFaultInst;
/** The oldest faulting store instruction. */
DynInstPtr storeFaultInst;
/** The oldest load that caused a memory ordering violation. */
DynInstPtr memDepViolator;
// Will also need how many read/write ports the Dcache has. Or keep track
// of that in stage that is one level up, and only call executeLoad/Store
// the appropriate number of times.
public:
/** Executes the load at the given index. */
template <class T>
Fault read(MemReqPtr &req, T &data, int load_idx);
/** Executes the store at the given index. */
template <class T>
Fault write(MemReqPtr &req, T &data, int store_idx);
/** Returns the index of the head load instruction. */
int getLoadHead() { return loadHead; }
/** Returns the sequence number of the head load instruction. */
InstSeqNum getLoadHeadSeqNum()
{
if (loadQueue[loadHead]) {
return loadQueue[loadHead]->seqNum;
} else {
return 0;
}
}
/** Returns the index of the head store instruction. */
int getStoreHead() { return storeHead; }
/** Returns the sequence number of the head store instruction. */
InstSeqNum getStoreHeadSeqNum()
{
if (storeQueue[storeHead].inst) {
return storeQueue[storeHead].inst->seqNum;
} else {
return 0;
}
}
/** Returns whether or not the LSQ unit is stalled. */
bool isStalled() { return stalled; }
};
template <class Impl>
template <class T>
Fault
OzoneLSQ<Impl>::read(MemReqPtr &req, T &data, int load_idx)
{
//Depending on issue2execute delay a squashed load could
//execute if it is found to be squashed in the same
//cycle it is scheduled to execute
assert(loadQueue[load_idx]);
if (loadQueue[load_idx]->isExecuted()) {
panic("Should not reach this point with split ops!");
memcpy(&data,req->data,req->size);
return NoFault;
}
// Make sure this isn't an uncacheable access
// A bit of a hackish way to get uncached accesses to work only if they're
// at the head of the LSQ and are ready to commit (at the head of the ROB
// too).
// @todo: Fix uncached accesses.
if (req->flags & UNCACHEABLE &&
(load_idx != loadHead || !loadQueue[load_idx]->readyToCommit())) {
return TheISA::genMachineCheckFault();
}
// Check the SQ for any previous stores that might lead to forwarding
int store_idx = loadQueue[load_idx]->sqIdx;
int store_size = 0;
DPRINTF(OzoneLSQ, "Read called, load idx: %i, store idx: %i, "
"storeHead: %i addr: %#x\n",
load_idx, store_idx, storeHead, req->paddr);
while (store_idx != -1) {
// End once we've reached the top of the LSQ
if (store_idx == storeWBIdx) {
break;
}
// Move the index to one younger
if (--store_idx < 0)
store_idx += SQEntries;
assert(storeQueue[store_idx].inst);
store_size = storeQueue[store_idx].size;
if (store_size == 0)
continue;
// Check if the store data is within the lower and upper bounds of
// addresses that the request needs.
bool store_has_lower_limit =
req->vaddr >= storeQueue[store_idx].inst->effAddr;
bool store_has_upper_limit =
(req->vaddr + req->size) <= (storeQueue[store_idx].inst->effAddr +
store_size);
bool lower_load_has_store_part =
req->vaddr < (storeQueue[store_idx].inst->effAddr +
store_size);
bool upper_load_has_store_part =
(req->vaddr + req->size) > storeQueue[store_idx].inst->effAddr;
// If the store's data has all of the data needed, we can forward.
if (store_has_lower_limit && store_has_upper_limit) {
int shift_amt = req->vaddr & (store_size - 1);
// Assumes byte addressing
shift_amt = shift_amt << 3;
// Cast this to type T?
data = storeQueue[store_idx].data >> shift_amt;
req->cmd = Read;
assert(!req->completionEvent);
req->completionEvent = NULL;
req->time = curTick;
assert(!req->data);
req->data = new uint8_t[64];
memcpy(req->data, &data, req->size);
DPRINTF(OzoneLSQ, "Forwarding from store idx %i to load to "
"addr %#x, data %#x\n",
store_idx, req->vaddr, *(req->data));
typename BackEnd::LdWritebackEvent *wb =
new typename BackEnd::LdWritebackEvent(loadQueue[load_idx],
be);
// We'll say this has a 1 cycle load-store forwarding latency
// for now.
// FIXME - Need to make this a parameter.
wb->schedule(curTick);
// Should keep track of stat for forwarded data
return NoFault;
} else if ((store_has_lower_limit && lower_load_has_store_part) ||
(store_has_upper_limit && upper_load_has_store_part) ||
(lower_load_has_store_part && upper_load_has_store_part)) {
// This is the partial store-load forwarding case where a store
// has only part of the load's data.
// If it's already been written back, then don't worry about
// stalling on it.
if (storeQueue[store_idx].completed) {
continue;
}
// Must stall load and force it to retry, so long as it's the oldest
// load that needs to do so.
if (!stalled ||
(stalled &&
loadQueue[load_idx]->seqNum <
loadQueue[stallingLoadIdx]->seqNum)) {
stalled = true;
stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
stallingLoadIdx = load_idx;
}
// Tell IQ/mem dep unit that this instruction will need to be
// rescheduled eventually
be->rescheduleMemInst(loadQueue[load_idx]);
DPRINTF(OzoneLSQ, "Load-store forwarding mis-match. "
"Store idx %i to load addr %#x\n",
store_idx, req->vaddr);
return NoFault;
}
}
// If there's no forwarding case, then go access memory
DynInstPtr inst = loadQueue[load_idx];
++usedPorts;
// if we have a cache, do cache access too
if (dcacheInterface) {
if (dcacheInterface->isBlocked()) {
isLoadBlocked = true;
// No fault occurred, even though the interface is blocked.
return NoFault;
}
DPRINTF(OzoneLSQ, "D-cache: PC:%#x reading from paddr:%#x "
"vaddr:%#x flags:%i\n",
inst->readPC(), req->paddr, req->vaddr, req->flags);
// Setup MemReq pointer
req->cmd = Read;
req->completionEvent = NULL;
req->time = curTick;
assert(!req->data);
req->data = new uint8_t[64];
assert(!req->completionEvent);
req->completionEvent =
new typename BackEnd::LdWritebackEvent(loadQueue[load_idx], be);
// Do Cache Access
MemAccessResult result = dcacheInterface->access(req);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
// @todo: Probably should support having no events
if (result != MA_HIT) {
DPRINTF(OzoneLSQ, "D-cache miss!\n");
DPRINTF(Activity, "Activity: ld accessing mem miss [sn:%lli]\n",
inst->seqNum);
lastDcacheStall = curTick;
_status = DcacheMissStall;
} else {
// DPRINTF(Activity, "Activity: ld accessing mem hit [sn:%lli]\n",
// inst->seqNum);
DPRINTF(OzoneLSQ, "D-cache hit!\n");
}
} else {
fatal("Must use D-cache with new memory system");
}
return NoFault;
}
template <class Impl>
template <class T>
Fault
OzoneLSQ<Impl>::write(MemReqPtr &req, T &data, int store_idx)
{
assert(storeQueue[store_idx].inst);
DPRINTF(OzoneLSQ, "Doing write to store idx %i, addr %#x data %#x"
" | storeHead:%i [sn:%i]\n",
store_idx, req->paddr, data, storeHead,
storeQueue[store_idx].inst->seqNum);
storeQueue[store_idx].req = req;
storeQueue[store_idx].size = sizeof(T);
storeQueue[store_idx].data = data;
// This function only writes the data to the store queue, so no fault
// can happen here.
return NoFault;
}
template <class Impl>
inline bool
OzoneLSQ<Impl>::loadBlocked()
{
bool ret_val = isLoadBlocked;
isLoadBlocked = false;
return ret_val;
}
#endif // __CPU_OZONE_LSQ_UNIT_HH__

846
cpu/ozone/lsq_unit_impl.hh Normal file
View file

@ -0,0 +1,846 @@
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/isa_traits.hh"
#include "base/str.hh"
#include "cpu/ozone/lsq_unit.hh"
template <class Impl>
OzoneLSQ<Impl>::StoreCompletionEvent::StoreCompletionEvent(int store_idx,
Event *wb_event,
OzoneLSQ<Impl> *lsq_ptr)
: Event(&mainEventQueue),
storeIdx(store_idx),
wbEvent(wb_event),
lsqPtr(lsq_ptr)
{
this->setFlags(Event::AutoDelete);
}
template <class Impl>
void
OzoneLSQ<Impl>::StoreCompletionEvent::process()
{
DPRINTF(OzoneLSQ, "Cache miss complete for store idx:%i\n", storeIdx);
//lsqPtr->removeMSHR(lsqPtr->storeQueue[storeIdx].inst->seqNum);
// lsqPtr->cpu->wakeCPU();
if (wbEvent)
wbEvent->process();
lsqPtr->completeStore(storeIdx);
}
template <class Impl>
const char *
OzoneLSQ<Impl>::StoreCompletionEvent::description()
{
return "LSQ store completion event";
}
template <class Impl>
OzoneLSQ<Impl>::OzoneLSQ()
: loads(0), stores(0), storesToWB(0), stalled(false), isLoadBlocked(false)
{
}
template<class Impl>
void
OzoneLSQ<Impl>::init(Params *params, unsigned maxLQEntries,
unsigned maxSQEntries, unsigned id)
{
DPRINTF(OzoneLSQ, "Creating OzoneLSQ%i object.\n",id);
lsqID = id;
LQEntries = maxLQEntries;
SQEntries = maxSQEntries;
loadQueue.resize(LQEntries);
storeQueue.resize(SQEntries);
// May want to initialize these entries to NULL
loadHead = loadTail = 0;
storeHead = storeWBIdx = storeTail = 0;
usedPorts = 0;
cachePorts = params->cachePorts;
dcacheInterface = params->dcacheInterface;
loadFaultInst = storeFaultInst = memDepViolator = NULL;
}
template<class Impl>
std::string
OzoneLSQ<Impl>::name() const
{
return "lsqunit";
}
template<class Impl>
void
OzoneLSQ<Impl>::clearLQ()
{
loadQueue.clear();
}
template<class Impl>
void
OzoneLSQ<Impl>::clearSQ()
{
storeQueue.clear();
}
template<class Impl>
void
OzoneLSQ<Impl>::setPageTable(PageTable *pt_ptr)
{
DPRINTF(OzoneLSQ, "Setting the page table pointer.\n");
pTable = pt_ptr;
}
template<class Impl>
void
OzoneLSQ<Impl>::resizeLQ(unsigned size)
{
assert( size >= LQEntries);
if (size > LQEntries) {
while (size > loadQueue.size()) {
DynInstPtr dummy;
loadQueue.push_back(dummy);
LQEntries++;
}
} else {
LQEntries = size;
}
}
template<class Impl>
void
OzoneLSQ<Impl>::resizeSQ(unsigned size)
{
if (size > SQEntries) {
while (size > storeQueue.size()) {
SQEntry dummy;
storeQueue.push_back(dummy);
SQEntries++;
}
} else {
SQEntries = size;
}
}
template <class Impl>
void
OzoneLSQ<Impl>::insert(DynInstPtr &inst)
{
// Make sure we really have a memory reference.
assert(inst->isMemRef());
// Make sure it's one of the two classes of memory references.
assert(inst->isLoad() || inst->isStore());
if (inst->isLoad()) {
insertLoad(inst);
} else {
insertStore(inst);
}
// inst->setInLSQ();
}
template <class Impl>
void
OzoneLSQ<Impl>::insertLoad(DynInstPtr &load_inst)
{
assert((loadTail + 1) % LQEntries != loadHead && loads < LQEntries);
DPRINTF(OzoneLSQ, "Inserting load PC %#x, idx:%i [sn:%lli]\n",
load_inst->readPC(), loadTail, load_inst->seqNum);
load_inst->lqIdx = loadTail;
if (stores == 0) {
load_inst->sqIdx = -1;
} else {
load_inst->sqIdx = storeTail;
}
loadQueue[loadTail] = load_inst;
incrLdIdx(loadTail);
++loads;
}
template <class Impl>
void
OzoneLSQ<Impl>::insertStore(DynInstPtr &store_inst)
{
// Make sure it is not full before inserting an instruction.
assert((storeTail + 1) % SQEntries != storeHead);
assert(stores < SQEntries);
DPRINTF(OzoneLSQ, "Inserting store PC %#x, idx:%i [sn:%lli]\n",
store_inst->readPC(), storeTail, store_inst->seqNum);
store_inst->sqIdx = storeTail;
store_inst->lqIdx = loadTail;
storeQueue[storeTail] = SQEntry(store_inst);
incrStIdx(storeTail);
++stores;
}
template <class Impl>
typename Impl::DynInstPtr
OzoneLSQ<Impl>::getMemDepViolator()
{
DynInstPtr temp = memDepViolator;
memDepViolator = NULL;
return temp;
}
template <class Impl>
unsigned
OzoneLSQ<Impl>::numFreeEntries()
{
unsigned free_lq_entries = LQEntries - loads;
unsigned free_sq_entries = SQEntries - stores;
// Both the LQ and SQ entries have an extra dummy entry to differentiate
// empty/full conditions. Subtract 1 from the free entries.
if (free_lq_entries < free_sq_entries) {
return free_lq_entries - 1;
} else {
return free_sq_entries - 1;
}
}
template <class Impl>
int
OzoneLSQ<Impl>::numLoadsReady()
{
int load_idx = loadHead;
int retval = 0;
while (load_idx != loadTail) {
assert(loadQueue[load_idx]);
if (loadQueue[load_idx]->readyToIssue()) {
++retval;
}
}
return retval;
}
#if 0
template <class Impl>
Fault
OzoneLSQ<Impl>::executeLoad()
{
Fault load_fault = NoFault;
DynInstPtr load_inst;
assert(readyLoads.size() != 0);
// Execute a ready load.
LdMapIt ready_it = readyLoads.begin();
load_inst = (*ready_it).second;
// Execute the instruction, which is held in the data portion of the
// iterator.
load_fault = load_inst->execute();
// If it executed successfully, then switch it over to the executed
// loads list.
if (load_fault == NoFault) {
executedLoads[load_inst->seqNum] = load_inst;
readyLoads.erase(ready_it);
} else {
loadFaultInst = load_inst;
}
return load_fault;
}
#endif
template <class Impl>
Fault
OzoneLSQ<Impl>::executeLoad(DynInstPtr &inst)
{
// Execute a specific load.
Fault load_fault = NoFault;
DPRINTF(OzoneLSQ, "Executing load PC %#x, [sn:%lli]\n",
inst->readPC(),inst->seqNum);
// Make sure it's really in the list.
// Normally it should always be in the list. However,
/* due to a syscall it may not be the list.
#ifdef DEBUG
int i = loadHead;
while (1) {
if (i == loadTail && !find(inst)) {
assert(0 && "Load not in the queue!");
} else if (loadQueue[i] == inst) {
break;
}
i = i + 1;
if (i >= LQEntries) {
i = 0;
}
}
#endif // DEBUG*/
load_fault = inst->initiateAcc();
// Might want to make sure that I'm not overwriting a previously faulting
// instruction that hasn't been checked yet.
// Actually probably want the oldest faulting load
if (load_fault != NoFault) {
// Maybe just set it as can commit here, although that might cause
// some other problems with sending traps to the ROB too quickly.
// iewStage->instToCommit(inst);
// iewStage->activityThisCycle();
}
return load_fault;
}
template <class Impl>
Fault
OzoneLSQ<Impl>::executeLoad(int lq_idx)
{
// Very hackish. Not sure the best way to check that this
// instruction is at the head of the ROB. I should have some sort
// of extra information here so that I'm not overloading the
// canCommit signal for 15 different things.
loadQueue[lq_idx]->setCanCommit();
Fault ret_fault = executeLoad(loadQueue[lq_idx]);
loadQueue[lq_idx]->clearCanCommit();
return ret_fault;
}
template <class Impl>
Fault
OzoneLSQ<Impl>::executeStore(DynInstPtr &store_inst)
{
// Make sure that a store exists.
assert(stores != 0);
int store_idx = store_inst->sqIdx;
DPRINTF(OzoneLSQ, "Executing store PC %#x [sn:%lli]\n",
store_inst->readPC(), store_inst->seqNum);
// Check the recently completed loads to see if any match this store's
// address. If so, then we have a memory ordering violation.
int load_idx = store_inst->lqIdx;
Fault store_fault = store_inst->initiateAcc();
// Store size should now be available. Use it to get proper offset for
// addr comparisons.
int size = storeQueue[store_idx].size;
if (size == 0) {
DPRINTF(OzoneLSQ,"Fault on Store PC %#x, [sn:%lli],Size = 0\n",
store_inst->readPC(),store_inst->seqNum);
return store_fault;
}
assert(store_fault == NoFault);
if (!storeFaultInst) {
if (store_fault != NoFault) {
panic("Fault in a store instruction!");
storeFaultInst = store_inst;
} else if (store_inst->isNonSpeculative()) {
// Nonspeculative accesses (namely store conditionals)
// need to set themselves as able to writeback if we
// haven't had a fault by here.
storeQueue[store_idx].canWB = true;
++storesToWB;
}
}
if (!memDepViolator) {
while (load_idx != loadTail) {
// Actually should only check loads that have actually executed
// Might be safe because effAddr is set to InvalAddr when the
// dyn inst is created.
// Must actually check all addrs in the proper size range
// Which is more correct than needs to be. What if for now we just
// assume all loads are quad-word loads, and do the addr based
// on that.
// @todo: Fix this, magic number being used here
if ((loadQueue[load_idx]->effAddr >> 8) ==
(store_inst->effAddr >> 8)) {
// A load incorrectly passed this store. Squash and refetch.
// For now return a fault to show that it was unsuccessful.
memDepViolator = loadQueue[load_idx];
return TheISA::genMachineCheckFault();
}
incrLdIdx(load_idx);
}
// If we've reached this point, there was no violation.
memDepViolator = NULL;
}
return store_fault;
}
template <class Impl>
void
OzoneLSQ<Impl>::commitLoad()
{
assert(loadQueue[loadHead]);
DPRINTF(OzoneLSQ, "[sn:%lli] Committing head load instruction, PC %#x\n",
loadQueue[loadHead]->seqNum, loadQueue[loadHead]->readPC());
loadQueue[loadHead] = NULL;
incrLdIdx(loadHead);
--loads;
}
template <class Impl>
void
OzoneLSQ<Impl>::commitLoad(InstSeqNum &inst)
{
// Hopefully I don't use this function too much
panic("Don't use this function!");
int i = loadHead;
while (1) {
if (i == loadTail) {
assert(0 && "Load not in the queue!");
} else if (loadQueue[i]->seqNum == inst) {
break;
}
++i;
if (i >= LQEntries) {
i = 0;
}
}
// loadQueue[i]->removeInLSQ();
loadQueue[i] = NULL;
--loads;
}
template <class Impl>
void
OzoneLSQ<Impl>::commitLoads(InstSeqNum &youngest_inst)
{
assert(loads == 0 || loadQueue[loadHead]);
while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
commitLoad();
}
}
template <class Impl>
void
OzoneLSQ<Impl>::commitStores(InstSeqNum &youngest_inst)
{
assert(stores == 0 || storeQueue[storeHead].inst);
int store_idx = storeHead;
while (store_idx != storeTail) {
assert(storeQueue[store_idx].inst);
if (!storeQueue[store_idx].canWB) {
if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
break;
}
DPRINTF(OzoneLSQ, "Marking store as able to write back, PC "
"%#x [sn:%lli]\n",
storeQueue[store_idx].inst->readPC(),
storeQueue[store_idx].inst->seqNum);
storeQueue[store_idx].canWB = true;
// --stores;
++storesToWB;
}
incrStIdx(store_idx);
}
}
template <class Impl>
void
OzoneLSQ<Impl>::writebackStores()
{
while (storesToWB > 0 &&
storeWBIdx != storeTail &&
storeQueue[storeWBIdx].inst &&
storeQueue[storeWBIdx].canWB &&
usedPorts < cachePorts) {
if (storeQueue[storeWBIdx].size == 0) {
completeStore(storeWBIdx);
incrStIdx(storeWBIdx);
continue;
}
if (dcacheInterface && dcacheInterface->isBlocked()) {
DPRINTF(OzoneLSQ, "Unable to write back any more stores, cache"
" is blocked!\n");
break;
}
++usedPorts;
if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
incrStIdx(storeWBIdx);
continue;
}
assert(storeQueue[storeWBIdx].req);
assert(!storeQueue[storeWBIdx].committed);
MemReqPtr req = storeQueue[storeWBIdx].req;
storeQueue[storeWBIdx].committed = true;
// Fault fault = cpu->translateDataReadReq(req);
req->cmd = Write;
req->completionEvent = NULL;
req->time = curTick;
assert(!req->data);
req->data = new uint8_t[64];
memcpy(req->data, (uint8_t *)&storeQueue[storeWBIdx].data, req->size);
DPRINTF(OzoneLSQ, "D-Cache: Writing back store idx:%i PC:%#x "
"to Addr:%#x, data:%#x [sn:%lli]\n",
storeWBIdx,storeQueue[storeWBIdx].inst->readPC(),
req->paddr, *(req->data),
storeQueue[storeWBIdx].inst->seqNum);
// if (fault != NoFault) {
//What should we do if there is a fault???
//for now panic
// panic("Page Table Fault!!!!!\n");
// }
if (dcacheInterface) {
MemAccessResult result = dcacheInterface->access(req);
//@todo temp fix for LL/SC (works fine for 1 CPU)
if (req->flags & LOCKED) {
req->result=1;
panic("LL/SC! oh no no support!!!");
}
if (isStalled() &&
storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
DPRINTF(OzoneLSQ, "Unstalling, stalling store [sn:%lli] "
"load idx:%i\n",
stallingStoreIsn, stallingLoadIdx);
stalled = false;
stallingStoreIsn = 0;
be->replayMemInst(loadQueue[stallingLoadIdx]);
}
if (result != MA_HIT && dcacheInterface->doEvents()) {
Event *wb = NULL;
/*
typename IEW::LdWritebackEvent *wb = NULL;
if (req->flags & LOCKED) {
// Stx_C does not generate a system port transaction.
req->result=0;
wb = new typename IEW::LdWritebackEvent(storeQueue[storeWBIdx].inst,
iewStage);
}
*/
DPRINTF(OzoneLSQ,"D-Cache Write Miss!\n");
// DPRINTF(Activity, "Active st accessing mem miss [sn:%lli]\n",
// storeQueue[storeWBIdx].inst->seqNum);
// Will stores need their own kind of writeback events?
// Do stores even need writeback events?
assert(!req->completionEvent);
req->completionEvent = new
StoreCompletionEvent(storeWBIdx, wb, this);
lastDcacheStall = curTick;
_status = DcacheMissStall;
//mshrSeqNums.push_back(storeQueue[storeWBIdx].inst->seqNum);
//DPRINTF(OzoneLSQ, "Added MSHR. count = %i\n",mshrSeqNums.size());
// Increment stat here or something
} else {
DPRINTF(OzoneLSQ,"D-Cache: Write Hit on idx:%i !\n",
storeWBIdx);
// DPRINTF(Activity, "Active st accessing mem hit [sn:%lli]\n",
// storeQueue[storeWBIdx].inst->seqNum);
if (req->flags & LOCKED) {
// Stx_C does not generate a system port transaction.
req->result=1;
typename BackEnd::LdWritebackEvent *wb =
new typename BackEnd::LdWritebackEvent(storeQueue[storeWBIdx].inst,
be);
wb->schedule(curTick);
}
completeStore(storeWBIdx);
}
incrStIdx(storeWBIdx);
} else {
panic("Must HAVE DCACHE!!!!!\n");
}
}
// Not sure this should set it to 0.
usedPorts = 0;
assert(stores >= 0 && storesToWB >= 0);
}
/*template <class Impl>
void
OzoneLSQ<Impl>::removeMSHR(InstSeqNum seqNum)
{
list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
mshrSeqNums.end(),
seqNum);
if (mshr_it != mshrSeqNums.end()) {
mshrSeqNums.erase(mshr_it);
DPRINTF(OzoneLSQ, "Removing MSHR. count = %i\n",mshrSeqNums.size());
}
}*/
template <class Impl>
void
OzoneLSQ<Impl>::squash(const InstSeqNum &squashed_num)
{
DPRINTF(OzoneLSQ, "Squashing until [sn:%lli]!"
"(Loads:%i Stores:%i)\n",squashed_num,loads,stores);
int load_idx = loadTail;
decrLdIdx(load_idx);
while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
// Clear the smart pointer to make sure it is decremented.
DPRINTF(OzoneLSQ,"Load Instruction PC %#x squashed, "
"[sn:%lli]\n",
loadQueue[load_idx]->readPC(),
loadQueue[load_idx]->seqNum);
if (isStalled() && load_idx == stallingLoadIdx) {
stalled = false;
stallingStoreIsn = 0;
stallingLoadIdx = 0;
}
loadQueue[load_idx]->squashed = true;
loadQueue[load_idx] = NULL;
--loads;
// Inefficient!
loadTail = load_idx;
decrLdIdx(load_idx);
}
int store_idx = storeTail;
decrStIdx(store_idx);
while (stores != 0 && storeQueue[store_idx].inst->seqNum > squashed_num) {
// Clear the smart pointer to make sure it is decremented.
DPRINTF(OzoneLSQ,"Store Instruction PC %#x squashed, "
"idx:%i [sn:%lli]\n",
storeQueue[store_idx].inst->readPC(),
store_idx, storeQueue[store_idx].inst->seqNum);
// I don't think this can happen. It should have been cleared by the
// stalling load.
if (isStalled() &&
storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
panic("Is stalled should have been cleared by stalling load!\n");
stalled = false;
stallingStoreIsn = 0;
}
storeQueue[store_idx].inst->squashed = true;
storeQueue[store_idx].inst = NULL;
storeQueue[store_idx].canWB = 0;
if (storeQueue[store_idx].req) {
assert(!storeQueue[store_idx].req->completionEvent);
}
storeQueue[store_idx].req = NULL;
--stores;
// Inefficient!
storeTail = store_idx;
decrStIdx(store_idx);
}
}
template <class Impl>
void
OzoneLSQ<Impl>::dumpInsts()
{
cprintf("Load store queue: Dumping instructions.\n");
cprintf("Load queue size: %i\n", loads);
cprintf("Load queue: ");
int load_idx = loadHead;
while (load_idx != loadTail && loadQueue[load_idx]) {
cprintf("[sn:%lli] %#x ", loadQueue[load_idx]->seqNum,
loadQueue[load_idx]->readPC());
incrLdIdx(load_idx);
}
cprintf("\nStore queue size: %i\n", stores);
cprintf("Store queue: ");
int store_idx = storeHead;
while (store_idx != storeTail && storeQueue[store_idx].inst) {
cprintf("[sn:%lli] %#x ", storeQueue[store_idx].inst->seqNum,
storeQueue[store_idx].inst->readPC());
incrStIdx(store_idx);
}
cprintf("\n");
}
template <class Impl>
void
OzoneLSQ<Impl>::completeStore(int store_idx)
{
assert(storeQueue[store_idx].inst);
storeQueue[store_idx].completed = true;
--storesToWB;
// A bit conservative because a store completion may not free up entries,
// but hopefully avoids two store completions in one cycle from making
// the CPU tick twice.
// cpu->activityThisCycle();
if (store_idx == storeHead) {
do {
incrStIdx(storeHead);
--stores;
} while (storeQueue[storeHead].completed &&
storeHead != storeTail);
// be->updateLSQNextCycle = true;
}
DPRINTF(OzoneLSQ, "Store head idx:%i\n", storeHead);
if (isStalled() &&
storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
DPRINTF(OzoneLSQ, "Unstalling, stalling store [sn:%lli] "
"load idx:%i\n",
stallingStoreIsn, stallingLoadIdx);
stalled = false;
stallingStoreIsn = 0;
be->replayMemInst(loadQueue[stallingLoadIdx]);
}
}
template <class Impl>
inline void
OzoneLSQ<Impl>::incrStIdx(int &store_idx)
{
if (++store_idx >= SQEntries)
store_idx = 0;
}
template <class Impl>
inline void
OzoneLSQ<Impl>::decrStIdx(int &store_idx)
{
if (--store_idx < 0)
store_idx += SQEntries;
}
template <class Impl>
inline void
OzoneLSQ<Impl>::incrLdIdx(int &load_idx)
{
if (++load_idx >= LQEntries)
load_idx = 0;
}
template <class Impl>
inline void
OzoneLSQ<Impl>::decrLdIdx(int &load_idx)
{
if (--load_idx < 0)
load_idx += LQEntries;
}

View file

@ -0,0 +1,76 @@
#ifndef __CPU_OZONE_NULL_PREDICTOR_HH__
#define __CPU_OZONE_NULL_PREDICTOR_HH__
#include "arch/isa_traits.hh"
#include "cpu/inst_seq.hh"
template <class Impl>
class NullPredictor
{
public:
typedef typename Impl::Params Params;
typedef typename Impl::DynInstPtr DynInstPtr;
NullPredictor(Params *p) { }
struct BPredInfo {
BPredInfo()
: PC(0), nextPC(0)
{ }
BPredInfo(const Addr &pc, const Addr &next_pc)
: PC(pc), nextPC(next_pc)
{ }
Addr PC;
Addr nextPC;
};
BPredInfo lookup(Addr &PC) { return BPredInfo(PC, PC+4); }
void undo(BPredInfo &bp_info) { return; }
/**
* Predicts whether or not the instruction is a taken branch, and the
* target of the branch if it is taken.
* @param inst The branch instruction.
* @param PC The predicted PC is passed back through this parameter.
* @param tid The thread id.
* @return Returns if the branch is taken or not.
*/
bool predict(DynInstPtr &inst, Addr &PC, unsigned tid)
{ return false; }
/**
* Tells the branch predictor to commit any updates until the given
* sequence number.
* @param done_sn The sequence number to commit any older updates up until.
* @param tid The thread id.
*/
void update(const InstSeqNum &done_sn, unsigned tid) { }
/**
* Squashes all outstanding updates until a given sequence number.
* @param squashed_sn The sequence number to squash any younger updates up
* until.
* @param tid The thread id.
*/
void squash(const InstSeqNum &squashed_sn, unsigned tid) { }
/**
* Squashes all outstanding updates until a given sequence number, and
* corrects that sn's update with the proper address and taken/not taken.
* @param squashed_sn The sequence number to squash any younger updates up
* until.
* @param corr_target The correct branch target.
* @param actually_taken The correct branch direction.
* @param tid The thread id.
*/
void squash(const InstSeqNum &squashed_sn, const Addr &corr_target,
bool actually_taken, unsigned tid)
{ }
};
#endif // __CPU_OZONE_NULL_PREDICTOR_HH__

73
cpu/ozone/ozone_impl.hh Normal file
View file

@ -0,0 +1,73 @@
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_OZONE_IMPL_HH__
#define __CPU_OZONE_OZONE_IMPL_HH__
#include "arch/alpha/isa_traits.hh"
#include "cpu/o3/bpred_unit.hh"
#include "cpu/ozone/back_end.hh"
#include "cpu/ozone/front_end.hh"
#include "cpu/ozone/inst_queue.hh"
#include "cpu/ozone/lsq_unit.hh"
#include "cpu/ozone/null_predictor.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/simple_params.hh"
template <class Impl>
class OzoneCPU;
template <class Impl>
class OzoneDynInst;
struct OzoneImpl {
typedef SimpleParams Params;
typedef OzoneCPU<OzoneImpl> OzoneCPU;
typedef OzoneCPU FullCPU;
// Would like to put these into their own area.
// typedef NullPredictor BranchPred;
typedef TwobitBPredUnit<OzoneImpl> BranchPred;
typedef FrontEnd<OzoneImpl> FrontEnd;
// Will need IQ, LSQ eventually
typedef BackEnd<OzoneImpl> BackEnd;
typedef InstQueue<OzoneImpl> InstQueue;
typedef OzoneLSQ<OzoneImpl> LdstQueue;
typedef OzoneDynInst<OzoneImpl> DynInst;
typedef RefCountingPtr<DynInst> DynInstPtr;
typedef uint64_t IssueStruct;
enum {
MaxThreads = 1
};
};
#endif // __CPU_OZONE_OZONE_IMPL_HH__

View file

@ -0,0 +1,7 @@
#include "cpu/ozone/rename_table_impl.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
template class RenameTable<OzoneImpl>;
template class RenameTable<SimpleImpl>;

25
cpu/ozone/rename_table.hh Normal file
View file

@ -0,0 +1,25 @@
#ifndef __CPU_OZONE_RENAME_TABLE_HH__
#define __CPU_OZONE_RENAME_TABLE_HH__
#include "arch/isa_traits.hh"
/** Rename table that holds the rename of each architectural register to
* producing DynInst. Needs to support copying from one table to another.
*/
template <class Impl>
class RenameTable {
public:
typedef typename Impl::DynInstPtr DynInstPtr;
RenameTable();
void copyFrom(const RenameTable<Impl> &table_to_copy);
DynInstPtr &operator [] (int index)
{ return table[index]; }
DynInstPtr table[TheISA::TotalNumRegs];
};
#endif // __CPU_OZONE_RENAME_TABLE_HH__

View file

@ -0,0 +1,23 @@
#include <cstdlib> // Not really sure what to include to get NULL
#include "cpu/ozone/rename_table.hh"
template <class Impl>
RenameTable<Impl>::RenameTable()
{
// Actually should set these to dummy dyn insts that have the initial value
// and force their values to be initialized. This keeps everything the
// same.
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
table[i] = NULL;
}
}
template <class Impl>
void
RenameTable<Impl>::copyFrom(const RenameTable<Impl> &table_to_copy)
{
for (int i = 0; i < TheISA::TotalNumRegs; ++i) {
table[i] = table_to_copy.table[i];
}
}

69
cpu/ozone/simple_impl.hh Normal file
View file

@ -0,0 +1,69 @@
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_OZONE_SIMPLE_IMPL_HH__
#define __CPU_OZONE_SIMPLE_IMPL_HH__
#include "arch/isa_traits.hh"
#include "cpu/o3/bpred_unit.hh"
#include "cpu/ozone/cpu.hh"
#include "cpu/ozone/front_end.hh"
#include "cpu/ozone/inorder_back_end.hh"
#include "cpu/ozone/null_predictor.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/simple_params.hh"
//template <class Impl>
//class OzoneCPU;
template <class Impl>
class OzoneDynInst;
struct SimpleImpl {
typedef SimpleParams Params;
typedef OzoneCPU<SimpleImpl> OzoneCPU;
typedef OzoneCPU FullCPU;
// Would like to put these into their own area.
// typedef NullPredictor BranchPred;
typedef TwobitBPredUnit<SimpleImpl> BranchPred;
typedef FrontEnd<SimpleImpl> FrontEnd;
// Will need IQ, LSQ eventually
typedef InorderBackEnd<SimpleImpl> BackEnd;
typedef OzoneDynInst<SimpleImpl> DynInst;
typedef RefCountingPtr<DynInst> DynInstPtr;
typedef uint64_t IssueStruct;
enum {
MaxThreads = 1
};
};
#endif // __CPU_OZONE_SIMPLE_IMPL_HH__

164
cpu/ozone/simple_params.hh Normal file
View file

@ -0,0 +1,164 @@
#ifndef __CPU_OZONE_SIMPLE_PARAMS_HH__
#define __CPU_OZONE_SIMPLE_PARAMS_HH__
#include "cpu/ozone/cpu.hh"
//Forward declarations
class AlphaDTB;
class AlphaITB;
class FUPool;
class FunctionalMemory;
class MemInterface;
class PageTable;
class Process;
class System;
/**
* This file defines the parameters that will be used for the OzoneCPU.
* This must be defined externally so that the Impl can have a params class
* defined that it can pass to all of the individual stages.
*/
class SimpleParams : public BaseCPU::Params
{
public:
#if FULL_SYSTEM
AlphaITB *itb; AlphaDTB *dtb;
#else
std::vector<Process *> workload;
// Process *process;
#endif // FULL_SYSTEM
//Page Table
PageTable *pTable;
FunctionalMemory *mem;
//
// Caches
//
MemInterface *icacheInterface;
MemInterface *dcacheInterface;
unsigned cachePorts;
unsigned width;
unsigned frontEndWidth;
unsigned backEndWidth;
unsigned backEndSquashLatency;
unsigned backEndLatency;
unsigned maxInstBufferSize;
unsigned numPhysicalRegs;
//
// Fetch
//
unsigned decodeToFetchDelay;
unsigned renameToFetchDelay;
unsigned iewToFetchDelay;
unsigned commitToFetchDelay;
unsigned fetchWidth;
//
// Decode
//
unsigned renameToDecodeDelay;
unsigned iewToDecodeDelay;
unsigned commitToDecodeDelay;
unsigned fetchToDecodeDelay;
unsigned decodeWidth;
//
// Rename
//
unsigned iewToRenameDelay;
unsigned commitToRenameDelay;
unsigned decodeToRenameDelay;
unsigned renameWidth;
//
// IEW
//
unsigned commitToIEWDelay;
unsigned renameToIEWDelay;
unsigned issueToExecuteDelay;
unsigned issueWidth;
unsigned executeWidth;
unsigned executeIntWidth;
unsigned executeFloatWidth;
unsigned executeBranchWidth;
unsigned executeMemoryWidth;
FUPool *fuPool;
//
// Commit
//
unsigned iewToCommitDelay;
unsigned renameToROBDelay;
unsigned commitWidth;
unsigned squashWidth;
//
// Branch predictor (BP & BTB)
//
unsigned localPredictorSize;
unsigned localCtrBits;
unsigned localHistoryTableSize;
unsigned localHistoryBits;
unsigned globalPredictorSize;
unsigned globalCtrBits;
unsigned globalHistoryBits;
unsigned choicePredictorSize;
unsigned choiceCtrBits;
unsigned BTBEntries;
unsigned BTBTagSize;
unsigned RASSize;
//
// Load store queue
//
unsigned LQEntries;
unsigned SQEntries;
//
// Memory dependence
//
unsigned SSITSize;
unsigned LFSTSize;
//
// Miscellaneous
//
unsigned numPhysIntRegs;
unsigned numPhysFloatRegs;
unsigned numIQEntries;
unsigned numROBEntries;
bool decoupledFrontEnd;
int dispatchWidth;
int wbWidth;
//SMT Parameters
unsigned smtNumFetchingThreads;
std::string smtFetchPolicy;
std::string smtIQPolicy;
unsigned smtIQThreshold;
std::string smtLSQPolicy;
unsigned smtLSQThreshold;
std::string smtCommitPolicy;
std::string smtROBPolicy;
unsigned smtROBThreshold;
// Probably can get this from somewhere.
unsigned instShiftAmt;
};
#endif // __CPU_OZONE_SIMPLE_PARAMS_HH__

171
cpu/ozone/thread_state.hh Normal file
View file

@ -0,0 +1,171 @@
#ifndef __CPU_OZONE_THREAD_STATE_HH__
#define __CPU_OZONE_THREAD_STATE_HH__
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "cpu/exec_context.hh"
#include "cpu/thread_state.hh"
class Event;
class Process;
#if FULL_SYSTEM
class EndQuiesceEvent;
class FunctionProfile;
class ProfileNode;
#else
class Process;
class FunctionalMemory;
#endif
// Maybe this ozone thread state should only really have committed state?
// I need to think about why I'm using this and what it's useful for. Clearly
// has benefits for SMT; basically serves same use as CPUExecContext.
// Makes the ExecContext proxy easier. Gives organization/central access point
// to state of a thread that can be accessed normally (i.e. not in-flight
// stuff within a OoO processor). Does this need an XC proxy within it?
template <class Impl>
struct OzoneThreadState : public ThreadState {
typedef typename ExecContext::Status Status;
typedef typename Impl::FullCPU FullCPU;
typedef TheISA::MiscReg MiscReg;
#if FULL_SYSTEM
OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem)
: ThreadState(-1, _thread_num, _mem),
inSyscall(0), trapPending(0)
{
memset(&regs, 0, sizeof(TheISA::RegFile));
}
#else
OzoneThreadState(FullCPU *_cpu, int _thread_num, Process *_process, int _asid)
: ThreadState(-1, _thread_num, NULL, _process, _asid),
cpu(_cpu), inSyscall(0), trapPending(0)
{
memset(&regs, 0, sizeof(TheISA::RegFile));
}
OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
int _asid)
: ThreadState(-1, _thread_num, _mem, NULL, _asid),
cpu(_cpu), inSyscall(0), trapPending(0)
{
memset(&regs, 0, sizeof(TheISA::RegFile));
}
#endif
Status _status;
Status status() const { return _status; }
void setStatus(Status new_status) { _status = new_status; }
RenameTable<Impl> renameTable; // Should I include backend and frontend
// tables here? For the ozone CPU, maybe, for the new full CPU, probably
// not...you wouldn't want threads just accessing the backend/frontend
// rename tables.
Addr PC; // What should these be set to? Probably the committed ones.
Addr nextPC;
// Current instruction?
TheISA::MachInst inst;
TheISA::RegFile regs;
// Front end? Back end?
// MemReqPtr memReq;
typename Impl::FullCPU *cpu;
bool inSyscall;
bool trapPending;
ExecContext *xcProxy;
ExecContext *getXCProxy() { return xcProxy; }
#if !FULL_SYSTEM
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#else
Fault translateInstReq(MemReqPtr &req)
{
return cpu->itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return cpu->dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return cpu->dtb->translate(req, true);
}
#endif
MiscReg readMiscReg(int misc_reg)
{
return regs.miscRegs.readReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return regs.miscRegs.readRegWithEffect(misc_reg, fault, xcProxy);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
return regs.miscRegs.setReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return regs.miscRegs.setRegWithEffect(misc_reg, val, xcProxy);
}
uint64_t readPC()
{ return PC; }
void setPC(uint64_t val)
{ PC = val; }
uint64_t readNextPC()
{ return nextPC; }
void setNextPC(uint64_t val)
{ nextPC = val; }
bool misspeculating() { return false; }
void setInst(TheISA::MachInst _inst) { inst = _inst; }
Counter readFuncExeInst() { return funcExeInst; }
void setFuncExeInst(Counter new_val) { funcExeInst = new_val; }
};
#endif // __CPU_OZONE_THREAD_STATE_HH__

View file

@ -0,0 +1,86 @@
from m5 import *
from BaseCPU import BaseCPU
class DerivOzoneCPU(BaseCPU):
type = 'DerivOzoneCPU'
numThreads = Param.Unsigned("number of HW thread contexts")
if not build_env['FULL_SYSTEM']:
mem = Param.FunctionalMemory(NULL, "memory")
width = Param.Unsigned("Width")
frontEndWidth = Param.Unsigned("Front end width")
backEndWidth = Param.Unsigned("Back end width")
backEndSquashLatency = Param.Unsigned("Back end squash latency")
backEndLatency = Param.Unsigned("Back end latency")
maxInstBufferSize = Param.Unsigned("Maximum instruction buffer size")
decodeToFetchDelay = Param.Unsigned("Decode to fetch delay")
renameToFetchDelay = Param.Unsigned("Rename to fetch delay")
iewToFetchDelay = Param.Unsigned("Issue/Execute/Writeback to fetch "
"delay")
commitToFetchDelay = Param.Unsigned("Commit to fetch delay")
fetchWidth = Param.Unsigned("Fetch width")
renameToDecodeDelay = Param.Unsigned("Rename to decode delay")
iewToDecodeDelay = Param.Unsigned("Issue/Execute/Writeback to decode "
"delay")
commitToDecodeDelay = Param.Unsigned("Commit to decode delay")
fetchToDecodeDelay = Param.Unsigned("Fetch to decode delay")
decodeWidth = Param.Unsigned("Decode width")
iewToRenameDelay = Param.Unsigned("Issue/Execute/Writeback to rename "
"delay")
commitToRenameDelay = Param.Unsigned("Commit to rename delay")
decodeToRenameDelay = Param.Unsigned("Decode to rename delay")
renameWidth = Param.Unsigned("Rename width")
commitToIEWDelay = Param.Unsigned("Commit to "
"Issue/Execute/Writeback delay")
renameToIEWDelay = Param.Unsigned("Rename to "
"Issue/Execute/Writeback delay")
issueToExecuteDelay = Param.Unsigned("Issue to execute delay (internal "
"to the IEW stage)")
issueWidth = Param.Unsigned("Issue width")
executeWidth = Param.Unsigned("Execute width")
executeIntWidth = Param.Unsigned("Integer execute width")
executeFloatWidth = Param.Unsigned("Floating point execute width")
executeBranchWidth = Param.Unsigned("Branch execute width")
executeMemoryWidth = Param.Unsigned("Memory execute width")
iewToCommitDelay = Param.Unsigned("Issue/Execute/Writeback to commit "
"delay")
renameToROBDelay = Param.Unsigned("Rename to reorder buffer delay")
commitWidth = Param.Unsigned("Commit width")
squashWidth = Param.Unsigned("Squash width")
localPredictorSize = Param.Unsigned("Size of local predictor")
localCtrBits = Param.Unsigned("Bits per counter")
localHistoryTableSize = Param.Unsigned("Size of local history table")
localHistoryBits = Param.Unsigned("Bits for the local history")
globalPredictorSize = Param.Unsigned("Size of global predictor")
globalCtrBits = Param.Unsigned("Bits per counter")
globalHistoryBits = Param.Unsigned("Bits of history")
choicePredictorSize = Param.Unsigned("Size of choice predictor")
choiceCtrBits = Param.Unsigned("Bits of choice counters")
BTBEntries = Param.Unsigned("Number of BTB entries")
BTBTagSize = Param.Unsigned("Size of the BTB tags, in bits")
RASSize = Param.Unsigned("RAS size")
LQEntries = Param.Unsigned("Number of load queue entries")
SQEntries = Param.Unsigned("Number of store queue entries")
LFSTSize = Param.Unsigned("Last fetched store table size")
SSITSize = Param.Unsigned("Store set ID table size")
numPhysIntRegs = Param.Unsigned("Number of physical integer registers")
numPhysFloatRegs = Param.Unsigned("Number of physical floating point "
"registers")
numIQEntries = Param.Unsigned("Number of instruction queue entries")
numROBEntries = Param.Unsigned("Number of reorder buffer entries")
instShiftAmt = Param.Unsigned("Number of bits to shift instructions by")
function_trace = Param.Bool(False, "Enable function trace")
function_trace_start = Param.Tick(0, "Cycle to start function trace")

View file

@ -0,0 +1,86 @@
from m5 import *
from BaseCPU import BaseCPU
class SimpleOzoneCPU(BaseCPU):
type = 'SimpleOzoneCPU'
numThreads = Param.Unsigned("number of HW thread contexts")
if not build_env['FULL_SYSTEM']:
mem = Param.FunctionalMemory(NULL, "memory")
width = Param.Unsigned("Width")
frontEndWidth = Param.Unsigned("Front end width")
backEndWidth = Param.Unsigned("Back end width")
backEndSquashLatency = Param.Unsigned("Back end squash latency")
backEndLatency = Param.Unsigned("Back end latency")
maxInstBufferSize = Param.Unsigned("Maximum instruction buffer size")
decodeToFetchDelay = Param.Unsigned("Decode to fetch delay")
renameToFetchDelay = Param.Unsigned("Rename to fetch delay")
iewToFetchDelay = Param.Unsigned("Issue/Execute/Writeback to fetch "
"delay")
commitToFetchDelay = Param.Unsigned("Commit to fetch delay")
fetchWidth = Param.Unsigned("Fetch width")
renameToDecodeDelay = Param.Unsigned("Rename to decode delay")
iewToDecodeDelay = Param.Unsigned("Issue/Execute/Writeback to decode "
"delay")
commitToDecodeDelay = Param.Unsigned("Commit to decode delay")
fetchToDecodeDelay = Param.Unsigned("Fetch to decode delay")
decodeWidth = Param.Unsigned("Decode width")
iewToRenameDelay = Param.Unsigned("Issue/Execute/Writeback to rename "
"delay")
commitToRenameDelay = Param.Unsigned("Commit to rename delay")
decodeToRenameDelay = Param.Unsigned("Decode to rename delay")
renameWidth = Param.Unsigned("Rename width")
commitToIEWDelay = Param.Unsigned("Commit to "
"Issue/Execute/Writeback delay")
renameToIEWDelay = Param.Unsigned("Rename to "
"Issue/Execute/Writeback delay")
issueToExecuteDelay = Param.Unsigned("Issue to execute delay (internal "
"to the IEW stage)")
issueWidth = Param.Unsigned("Issue width")
executeWidth = Param.Unsigned("Execute width")
executeIntWidth = Param.Unsigned("Integer execute width")
executeFloatWidth = Param.Unsigned("Floating point execute width")
executeBranchWidth = Param.Unsigned("Branch execute width")
executeMemoryWidth = Param.Unsigned("Memory execute width")
iewToCommitDelay = Param.Unsigned("Issue/Execute/Writeback to commit "
"delay")
renameToROBDelay = Param.Unsigned("Rename to reorder buffer delay")
commitWidth = Param.Unsigned("Commit width")
squashWidth = Param.Unsigned("Squash width")
localPredictorSize = Param.Unsigned("Size of local predictor")
localCtrBits = Param.Unsigned("Bits per counter")
localHistoryTableSize = Param.Unsigned("Size of local history table")
localHistoryBits = Param.Unsigned("Bits for the local history")
globalPredictorSize = Param.Unsigned("Size of global predictor")
globalCtrBits = Param.Unsigned("Bits per counter")
globalHistoryBits = Param.Unsigned("Bits of history")
choicePredictorSize = Param.Unsigned("Size of choice predictor")
choiceCtrBits = Param.Unsigned("Bits of choice counters")
BTBEntries = Param.Unsigned("Number of BTB entries")
BTBTagSize = Param.Unsigned("Size of the BTB tags, in bits")
RASSize = Param.Unsigned("RAS size")
LQEntries = Param.Unsigned("Number of load queue entries")
SQEntries = Param.Unsigned("Number of store queue entries")
LFSTSize = Param.Unsigned("Last fetched store table size")
SSITSize = Param.Unsigned("Store set ID table size")
numPhysIntRegs = Param.Unsigned("Number of physical integer registers")
numPhysFloatRegs = Param.Unsigned("Number of physical floating point "
"registers")
numIQEntries = Param.Unsigned("Number of instruction queue entries")
numROBEntries = Param.Unsigned("Number of reorder buffer entries")
instShiftAmt = Param.Unsigned("Number of bits to shift instructions by")
function_trace = Param.Bool(False, "Enable function trace")
function_trace_start = Param.Tick(0, "Cycle to start function trace")