x86: Add support for loading 32-bit and 80-bit floats in the x87

The x87 FPU supports three floating point formats: 32-bit, 64-bit, and
80-bit floats. The current gem5 implementation supports 32-bit and
64-bit floats, but only works correctly for 64-bit floats. This
changeset fixes the 32-bit float handling by correctly loading and
rounding (using truncation) 32-bit floats instead of simply truncating
the bit pattern.

80-bit floats are loaded by first loading the 80-bits of the float to
two temporary integer registers. A micro-op (cvtint_fp80) then
converts the contents of the two integer registers to the internal FP
representation (double). Similarly, when storing an 80-bit float,
there are two conversion routines (ctvfp80h_int and cvtfp80l_int) that
convert an internal FP register to 80-bit and stores the upper 64-bits
or lower 32-bits to an integer register, which is the written to
memory using normal integer stores.
This commit is contained in:
Andreas Sandberg 2013-09-30 12:00:20 +02:00
parent c299dcedc6
commit 654d1e675a
4 changed files with 106 additions and 14 deletions

View file

@ -67,11 +67,11 @@ format WarnUnimpl {
0x0: fnop();
default: Inst::UD2();
}
default: fst();
default: Inst::FST(Ed);
}
0x3: decode MODRM_MOD {
0x3: Inst::UD2();
default: fstp();
default: Inst::FSTP(Ed);
}
0x4: decode MODRM_MOD {
0x3: decode MODRM_RM {
@ -189,7 +189,7 @@ format WarnUnimpl {
0x5: decode MODRM_MOD {
0x3: fucomi();
// 80-bit load
default: fld();
default: Inst::FLD80(M);
}
0x6: decode MODRM_MOD {
0x3: fcomi();
@ -197,7 +197,7 @@ format WarnUnimpl {
}
0x7: decode MODRM_MOD {
0x3: Inst::UD2();
default: fstp();
default: Inst::FST80P(M);
}
}
//0x4: esc4();

View file

@ -37,13 +37,13 @@
microcode = '''
def macroop FLD_M {
ldfp ufp1, seg, sib, disp
ldfp87 ufp1, seg, sib, disp
movfp st(-1), ufp1, spm=-1
};
def macroop FLD_P {
rdip t7
ldfp ufp1, seg, riprel, disp
ldfp87 ufp1, seg, riprel, disp
movfp st(-1), ufp1, spm=-1
};
@ -51,17 +51,30 @@ def macroop FLD_R {
movfp st(-1), sti, spm=-1
};
def macroop FLD80_M {
ld t1, seg, sib, "DISPLACEMENT", dataSize=8
ld t2, seg, sib, "DISPLACEMENT + 8", dataSize=2
cvtint_fp80 st(-1), t1, t2, spm=-1
};
def macroop FLD80_P {
rdip t7
ld t1, seg, riprel, "DISPLACEMENT", dataSize=8
ld t2, seg, riprel, "DISPLACEMENT + 8", dataSize=2
cvtint_fp80 st(-1), t1, t2, spm=-1
};
def macroop FST_R {
movfp sti, st(0)
};
def macroop FST_M {
stfp st(0), seg, sib, disp
stfp87 st(0), seg, sib, disp
};
def macroop FST_P {
rdip t7
stfp st(0), seg, riprel, disp
stfp87 st(0), seg, riprel, disp
};
def macroop FSTP_R {
@ -70,14 +83,32 @@ def macroop FSTP_R {
def macroop FSTP_M {
movfp ufp1, st(0)
stfp ufp1, seg, sib, disp
stfp87 ufp1, seg, sib, disp
pop87
};
def macroop FSTP_P {
movfp ufp1, st(0)
rdip t7
stfp ufp1, seg, riprel, disp
stfp87 ufp1, seg, riprel, disp
pop87
};
def macroop FST80P_M {
cvtfp80h_int t1, st(0)
cvtfp80l_int t2, st(0)
st t1, seg, sib, "DISPLACEMENT + 0", dataSize=8
st t2, seg, sib, "DISPLACEMENT + 8", dataSize=2
pop87
};
def macroop FST80P_P {
rdip t7
cvtfp80h_int t1, st(0)
cvtfp80l_int t2, st(0)
st t1, seg, riprel, "DISPLACEMENT + 0", dataSize=8
st t2, seg, riprel, "DISPLACEMENT + 8", dataSize=2
pop87
};
'''

View file

@ -295,9 +295,10 @@ let {{
class ConvOp(FpBinaryOp):
abstract = True
op_class = 'FloatCvtOp'
def __init__(self, dest, src1):
def __init__(self, dest, src1, **kwargs):
super(ConvOp, self).__init__(dest, src1, \
"InstRegIndex(FLOATREG_MICROFP0)")
"InstRegIndex(FLOATREG_MICROFP0)", \
**kwargs)
# These probably shouldn't look at the ExtMachInst directly to figure
# out what size to use and should instead delegate that to the macroop's
@ -324,6 +325,34 @@ let {{
SDestReg = merge(SDestReg, intSrcReg1, 4);
'''
# Convert two integers registers representing an 80-bit floating
# point number to an x87 register.
class cvtint_fp80(FpBinaryOp):
code = '''
uint8_t bits[10];
*(uint64_t *)(bits + 0) = SSrcReg1;
*(uint16_t *)(bits + 8) = (uint16_t)SSrcReg2;
FpDestReg = loadFloat80(bits);
'''
# Convert an x87 register (double) into extended precision and
# extract the highest 64 bits.
class cvtfp80h_int(ConvOp):
code = '''
char bits[10];
storeFloat80(bits, FpSrcReg1);
SDestReg = *(uint64_t *)(bits + 0);
'''
# Convert an x87 register (double) into extended precision and
# extract the lowest 16 bits.
class cvtfp80l_int(ConvOp):
code = '''
char bits[10];
storeFloat80(bits, FpSrcReg1);
SDestReg = *(uint16_t *)(bits + 8);
'''
# These need to consider size at some point. They'll always use doubles
# for the moment.
class addfp(FpBinaryOp):

View file

@ -410,7 +410,22 @@ let {{
defineMicroLoadOp('Ldstl', 'Data = merge(Data, Mem, dataSize);',
'Data = Mem & mask(dataSize * 8);',
'(StoreCheck << FlagShift) | Request::LOCKED')
defineMicroLoadOp('Ldfp', 'FpData_uqw = Mem;', big = False)
defineMicroLoadOp('Ldfp', code='FpData_uqw = Mem', big = False)
defineMicroLoadOp('Ldfp87', code='''
switch (dataSize)
{
case 4:
FpData_df = *(float *)&Mem;
break;
case 8:
FpData_df = *(double *)&Mem;
break;
default:
panic("Unhandled data size in LdFp87.\\n");
}
''', big = False)
def defineMicroStoreOp(mnemonic, code, completeCode="", mem_flags="0"):
global header_output
@ -447,7 +462,24 @@ let {{
defineMicroStoreOp('St', 'Mem = pick(Data, 2, dataSize);')
defineMicroStoreOp('Stul', 'Mem = pick(Data, 2, dataSize);',
mem_flags="Request::LOCKED")
defineMicroStoreOp('Stfp', 'Mem = FpData_uqw;')
defineMicroStoreOp('Stfp', code='Mem = FpData_uqw;')
defineMicroStoreOp('Stfp87', code='''
switch (dataSize)
{
case 4: {
float single(FpData_df);
Mem = *(uint32_t *)&single;
} break;
case 8:
Mem = *(uint64_t *)&FpData_df;
break;
default:
panic("Unhandled data size in StFp87.\\n");
}
''')
defineMicroStoreOp('Cda', 'Mem = 0;', mem_flags="Request::NO_ACCESS")
iop = InstObjParams("lea", "Lea", 'X86ISA::LdStOp',