A batch of changes and fixes. Macroops are now generated automatically, multiops do alot more of what they're supposed to (excluding memory operands), and microops are slightly more implemented.
--HG-- extra : convert_revision : 518059f47e11df50aa450d4a322ef2ac069c99c9
This commit is contained in:
parent
0ce6936e7d
commit
61c56ffeaf
6 changed files with 371 additions and 117 deletions
|
@ -61,14 +61,15 @@
|
||||||
0x1: decode OPCODE_OP_TOP5 {
|
0x1: decode OPCODE_OP_TOP5 {
|
||||||
format WarnUnimpl {
|
format WarnUnimpl {
|
||||||
0x00: decode OPCODE_OP_BOTTOM3 {
|
0x00: decode OPCODE_OP_BOTTOM3 {
|
||||||
|
0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
|
||||||
|
0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
|
||||||
0x6: push_ES();
|
0x6: push_ES();
|
||||||
0x7: pop_ES();
|
0x7: pop_ES();
|
||||||
default: MultiOp::add(
|
default: MultiOp::add(
|
||||||
{{Add %0 %0 %1}},
|
{{Add %0 %0 %1}},
|
||||||
OPCODE_OP_BOTTOM3,
|
OPCODE_OP_BOTTOM3,
|
||||||
[[Eb,Gb],[Ev,Gv],
|
[[Eb,Gb],[Ev,Gv],
|
||||||
[Gb,Eb],[Gv,Ev],
|
[Gb,Eb],[Gv,Ev]]);
|
||||||
[Al,Ib],[rAx,Iz]]);
|
|
||||||
}
|
}
|
||||||
0x01: decode OPCODE_OP_BOTTOM3 {
|
0x01: decode OPCODE_OP_BOTTOM3 {
|
||||||
0x0: or_Eb_Gb();
|
0x0: or_Eb_Gb();
|
||||||
|
@ -125,15 +126,16 @@
|
||||||
0x7: das();
|
0x7: das();
|
||||||
}
|
}
|
||||||
0x06: decode OPCODE_OP_BOTTOM3 {
|
0x06: decode OPCODE_OP_BOTTOM3 {
|
||||||
0x0: xor_Eb_Gb();
|
0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
|
||||||
0x1: xor_Ev_Gv();
|
0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
|
||||||
0x2: xor_Gb_Eb();
|
|
||||||
0x3: xor_Gv_Ev();
|
|
||||||
0x4: xor_Al_Ib();
|
|
||||||
0x5: xor_rAX_Iz();
|
|
||||||
0x6: M5InternalError::error(
|
0x6: M5InternalError::error(
|
||||||
{{"Tried to execute the SS segment override prefix!"}});
|
{{"Tried to execute the SS segment override prefix!"}});
|
||||||
0x7: aaa();
|
0x7: aaa();
|
||||||
|
default: MultiOp::xor(
|
||||||
|
{{Xor %0 %0 %1}},
|
||||||
|
OPCODE_OP_BOTTOM3,
|
||||||
|
[[Eb,Gb],[Ev,Gv],
|
||||||
|
[Gb,Eb],[Gv,Ev]]);
|
||||||
}
|
}
|
||||||
0x07: decode OPCODE_OP_BOTTOM3 {
|
0x07: decode OPCODE_OP_BOTTOM3 {
|
||||||
0x0: cmp_Eb_Gb();
|
0x0: cmp_Eb_Gb();
|
||||||
|
|
|
@ -95,6 +95,9 @@
|
||||||
//malfunction of the decode mechanism.
|
//malfunction of the decode mechanism.
|
||||||
##include "error.isa"
|
##include "error.isa"
|
||||||
|
|
||||||
|
//Include code to build up macro op instructions
|
||||||
|
##include "macroop.isa"
|
||||||
|
|
||||||
//Include a format which implements a batch of instructions which do the same
|
//Include a format which implements a batch of instructions which do the same
|
||||||
//thing on a variety of inputs
|
//thing on a variety of inputs
|
||||||
##include "multi.isa"
|
##include "multi.isa"
|
||||||
|
|
160
src/arch/x86/isa/formats/macroop.isa
Normal file
160
src/arch/x86/isa/formats/macroop.isa
Normal file
|
@ -0,0 +1,160 @@
|
||||||
|
// -*- mode:c++ -*-
|
||||||
|
|
||||||
|
// Copyright (c) 2007 The Hewlett-Packard Development Company
|
||||||
|
// All rights reserved.
|
||||||
|
//
|
||||||
|
// Redistribution and use of this software in source and binary forms,
|
||||||
|
// with or without modification, are permitted provided that the
|
||||||
|
// following conditions are met:
|
||||||
|
//
|
||||||
|
// The software must be used only for Non-Commercial Use which means any
|
||||||
|
// use which is NOT directed to receiving any direct monetary
|
||||||
|
// compensation for, or commercial advantage from such use. Illustrative
|
||||||
|
// examples of non-commercial use are academic research, personal study,
|
||||||
|
// teaching, education and corporate research & development.
|
||||||
|
// Illustrative examples of commercial use are distributing products for
|
||||||
|
// commercial advantage and providing services using the software for
|
||||||
|
// commercial advantage.
|
||||||
|
//
|
||||||
|
// If you wish to use this software or functionality therein that may be
|
||||||
|
// covered by patents for commercial use, please contact:
|
||||||
|
// Director of Intellectual Property Licensing
|
||||||
|
// Office of Strategy and Technology
|
||||||
|
// Hewlett-Packard Company
|
||||||
|
// 1501 Page Mill Road
|
||||||
|
// Palo Alto, California 94304
|
||||||
|
//
|
||||||
|
// Redistributions of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer. Redistributions
|
||||||
|
// in binary form must reproduce the above copyright notice, this list of
|
||||||
|
// conditions and the following disclaimer in the documentation and/or
|
||||||
|
// other materials provided with the distribution. Neither the name of
|
||||||
|
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
|
||||||
|
// contributors may be used to endorse or promote products derived from
|
||||||
|
// this software without specific prior written permission. No right of
|
||||||
|
// sublicense is granted herewith. Derivatives of the software and
|
||||||
|
// output created using the software may be prepared, but only for
|
||||||
|
// Non-Commercial Uses. Derivatives of the software may be shared with
|
||||||
|
// others provided: (i) the others agree to abide by the list of
|
||||||
|
// conditions herein which includes the Non-Commercial Use restrictions;
|
||||||
|
// and (ii) such Derivatives of the software include the above copyright
|
||||||
|
// notice to acknowledge the contribution from this software where
|
||||||
|
// applicable, this list of conditions and the disclaimer below.
|
||||||
|
//
|
||||||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
//
|
||||||
|
// Authors: Gabe Black
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// Instructions that do the same thing to multiple sets of arguments.
|
||||||
|
//
|
||||||
|
|
||||||
|
output header {{
|
||||||
|
|
||||||
|
// Base class for most macroops, except ones that need to commit as
|
||||||
|
// they go.
|
||||||
|
class X86MacroInst : public X86StaticInst
|
||||||
|
{
|
||||||
|
protected:
|
||||||
|
const uint32_t numMicroOps;
|
||||||
|
|
||||||
|
//Constructor.
|
||||||
|
X86MacroInst(const char *mnem, ExtMachInst _machInst,
|
||||||
|
uint32_t _numMicroOps)
|
||||||
|
: X86StaticInst(mnem, _machInst, No_OpClass),
|
||||||
|
numMicroOps(_numMicroOps)
|
||||||
|
{
|
||||||
|
assert(numMicroOps);
|
||||||
|
microOps = new StaticInstPtr[numMicroOps];
|
||||||
|
flags[IsMacroOp] = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
~X86MacroInst()
|
||||||
|
{
|
||||||
|
delete [] microOps;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string generateDisassembly(Addr pc,
|
||||||
|
const SymbolTable *symtab) const;
|
||||||
|
|
||||||
|
StaticInstPtr * microOps;
|
||||||
|
|
||||||
|
StaticInstPtr fetchMicroOp(MicroPC microPC)
|
||||||
|
{
|
||||||
|
assert(microPC < numMicroOps);
|
||||||
|
return microOps[microPC];
|
||||||
|
}
|
||||||
|
|
||||||
|
%(BasicExecPanic)s
|
||||||
|
};
|
||||||
|
|
||||||
|
// Base class for macroops which commit as they go. This is for
|
||||||
|
// instructions which can be partially completed like those with the
|
||||||
|
// rep prefix. This prevents those instructions from overflowing
|
||||||
|
// buffers with uncommitted microops.
|
||||||
|
class X86RollingMacroInst : public X86MacroInst
|
||||||
|
{
|
||||||
|
protected:
|
||||||
|
//Constructor.
|
||||||
|
X86RollingMacroInst(const char *mnem, ExtMachInst _machInst,
|
||||||
|
uint32_t _numMicroOps)
|
||||||
|
: X86MacroInst(mnem, _machInst, numMicroOps)
|
||||||
|
{}
|
||||||
|
};
|
||||||
|
}};
|
||||||
|
|
||||||
|
// Basic instruction class constructor template.
|
||||||
|
def template MacroConstructor {{
|
||||||
|
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
|
||||||
|
: %(base_class)s("%(mnemonic)s", machInst, %(num_micro_ops)s)
|
||||||
|
{
|
||||||
|
%(constructor)s;
|
||||||
|
//alloc_micro_ops is the code that sets up the microOps
|
||||||
|
//array in the parent class. This hook will hopefully
|
||||||
|
//allow all that to be automated.
|
||||||
|
%(alloc_micro_ops)s;
|
||||||
|
setMicroFlags();
|
||||||
|
}
|
||||||
|
}};
|
||||||
|
|
||||||
|
let {{
|
||||||
|
def genMacroOp(name, Name, ops, rolling = False):
|
||||||
|
baseClass = 'X86MacroInst'
|
||||||
|
if rolling:
|
||||||
|
baseClass = 'X86RollingMacroInst'
|
||||||
|
numMicroOps = len(ops)
|
||||||
|
allocMicroOps = ''
|
||||||
|
micropc = 0
|
||||||
|
allocMicroOps += \
|
||||||
|
"microOps[0] = %s;\n" % \
|
||||||
|
op.getAllocator(True, not rolling, True, False)
|
||||||
|
micropc += 1
|
||||||
|
if numMicroOps > 2:
|
||||||
|
for op in ops[1:-1]:
|
||||||
|
allocMicroOps += \
|
||||||
|
"microOps[%d] = %s;\n" % \
|
||||||
|
(micropc, op.getAllocator(True, not rolling, False, False))
|
||||||
|
micropc += 1
|
||||||
|
allocMicroOps += \
|
||||||
|
"microOps[%d] = %s;\n" % \
|
||||||
|
op.getAllocator(True, not rolling, False, True)
|
||||||
|
iop = InstObjParams(name, Name, baseClass,
|
||||||
|
{'code' : '', 'num_micro_ops' : numMicroOps,
|
||||||
|
'alloc_micro_ops' : allocMicroOps})
|
||||||
|
header_output = BasicDeclare.subst(iop)
|
||||||
|
decoder_output = MacroConstructor.subst(iop)
|
||||||
|
decode_block = BasicDecode.subst(iop)
|
||||||
|
exec_output = ''
|
||||||
|
return (header_output, decoder_output, decode_block, exec_output)
|
||||||
|
}};
|
|
@ -60,95 +60,152 @@
|
||||||
// Instructions that do the same thing to multiple sets of arguments.
|
// Instructions that do the same thing to multiple sets of arguments.
|
||||||
//
|
//
|
||||||
|
|
||||||
output header {{
|
|
||||||
}};
|
|
||||||
|
|
||||||
output decoder {{
|
|
||||||
}};
|
|
||||||
|
|
||||||
output exec {{
|
|
||||||
}};
|
|
||||||
|
|
||||||
let {{
|
let {{
|
||||||
multiops = {}
|
# This builds either a regular or macro op to implement the sequence of
|
||||||
}};
|
# ops we give it.
|
||||||
|
def genInst(name, Name, ops):
|
||||||
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
|
|
||||||
# These are C++ statements to create each type of static int. Since we
|
|
||||||
# don't know what will be microcoded and what won't, we can't assume a
|
|
||||||
# particular set of arguments for the constructor.
|
|
||||||
instNew = []
|
|
||||||
orig_code = code
|
|
||||||
opRe = re.compile(r"%(?P<operandNum>[0-9]*)")
|
|
||||||
# Get all the labels out of the code and make a dict for them. We'll do
|
|
||||||
# this once since the position of labels shouldn't need to change at all.
|
|
||||||
ops = assembleMicro(code)
|
|
||||||
labels = buildLabelDict(ops)
|
|
||||||
for tagSet in opTags:
|
|
||||||
# A list of strings which either have the register number to use, or
|
|
||||||
# a piece of code for calculating it.
|
|
||||||
regNums = []
|
|
||||||
code = orig_code
|
|
||||||
# Build up a name for this instructions class using the argument
|
|
||||||
# types. Each variation will get its own name this way.
|
|
||||||
postfix = ''
|
|
||||||
for tag in tagSet:
|
|
||||||
postfix += '_' + tag
|
|
||||||
|
|
||||||
# Figure out what register indexes to use for each operand. This
|
|
||||||
# is where loads/stores could be set up. I need to distinguish
|
|
||||||
# between inputs and outputs.
|
|
||||||
# For right now, the indexes are just an increasing sequence
|
|
||||||
counter = 0
|
|
||||||
for tag in tagSet:
|
|
||||||
regNums.append("%d" % counter)
|
|
||||||
counter += 1
|
|
||||||
|
|
||||||
# Replace the placeholders %0, %1, etc., with the right register
|
|
||||||
# indexes.
|
|
||||||
opMatch = opRe.search(code)
|
|
||||||
while opMatch:
|
|
||||||
opNum = opMatch.group("operandNum")
|
|
||||||
opNum = int(opNum)
|
|
||||||
if opNum > len(regNums):
|
|
||||||
print "No operand type specified for operand %d!" % opNum
|
|
||||||
print "I should bail out here too!"
|
|
||||||
regNum = regNums[opNum]
|
|
||||||
code = opRe.sub(regNum, code, 1)
|
|
||||||
opMatch = opRe.search(code)
|
|
||||||
|
|
||||||
# All the loads which feed this instruction
|
|
||||||
loads = []
|
|
||||||
# All the ops that make up the instruction proper.
|
|
||||||
ops = assembleMicro(code)
|
|
||||||
# Get all the labels out and make a dict for them
|
|
||||||
# All the stores for this instruction's results
|
|
||||||
stores = []
|
|
||||||
|
|
||||||
# Various counts
|
|
||||||
numLoads = len(loads)
|
|
||||||
numOps = len(ops)
|
|
||||||
numStores = len(stores)
|
|
||||||
totalOps = numLoads + numOps + numStores
|
|
||||||
print "There are %d total ops" % totalOps
|
|
||||||
|
|
||||||
# If we can implement this instruction with exactly one microop, just
|
# If we can implement this instruction with exactly one microop, just
|
||||||
# use that directly.
|
# use that directly.
|
||||||
newStmnt = ''
|
newStmnt = ''
|
||||||
if totalOps == 1:
|
if len(ops) == 1:
|
||||||
newStmnt = ops[0].getAllocator(labels)
|
decode_block = "return (X86StaticInst *)(%s);" % \
|
||||||
|
ops[0].getAllocator()
|
||||||
|
return ('', '', decode_block, '')
|
||||||
else:
|
else:
|
||||||
# Build up a macro op. We'll punt on this for now
|
# Build a macroop to contain the sequence of microops we've
|
||||||
pass
|
# been given.
|
||||||
|
return genMacroOp(name, Name, ops)
|
||||||
instNew.append(newStmnt)
|
}};
|
||||||
|
|
||||||
decodeBlob = 'switch(%s) {\n' % switchVal
|
let {{
|
||||||
counter = 0
|
# This code builds up a decode block which decodes based on switchval.
|
||||||
for newStmnt in instNew:
|
# vals is a dict which matches case values with what should be decoded to.
|
||||||
decodeBlob += 'case %d: return (X86StaticInst *)(%s);\n' % \
|
# builder is called on the exploded contents of "vals" values to generate
|
||||||
(counter, newStmnt)
|
# whatever code should be used.
|
||||||
counter += 1
|
def doMultiOp(name, Name, builder, switchVal, vals, default = None):
|
||||||
decodeBlob += '}\n'
|
header_output = ''
|
||||||
decode_block = decodeBlob
|
decoder_output = ''
|
||||||
|
decode_block = 'switch(%s) {\n' % switchVal
|
||||||
|
exec_output = ''
|
||||||
|
for (val, todo) in vals.items():
|
||||||
|
(new_header_output,
|
||||||
|
new_decoder_output,
|
||||||
|
new_decode_block,
|
||||||
|
new_exec_output) = builder(name, Name, *todo)
|
||||||
|
header_output += new_header_output
|
||||||
|
decoder_output += new_decoder_output
|
||||||
|
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
|
||||||
|
exec_output += new_exec_output
|
||||||
|
if default:
|
||||||
|
(new_header_output,
|
||||||
|
new_decoder_output,
|
||||||
|
new_decode_block,
|
||||||
|
new_exec_output) = builder(name, Name, *default)
|
||||||
|
header_output += new_header_output
|
||||||
|
decoder_output += new_decoder_output
|
||||||
|
decode_block += '\tdefault: %s\n' % new_decode_block
|
||||||
|
exec_output += new_exec_output
|
||||||
|
decode_block += '}\n'
|
||||||
|
return (header_output, decoder_output, decode_block, exec_output)
|
||||||
|
}};
|
||||||
|
|
||||||
|
let {{
|
||||||
|
|
||||||
|
# This function specializes the given piece of code to use a particular
|
||||||
|
# set of argument types described by "opTags". These are "implemented"
|
||||||
|
# in reverse order.
|
||||||
|
def doCompOps(name, Name, code, opTags, postfix):
|
||||||
|
opNum = len(opTags) - 1
|
||||||
|
while len(opTags):
|
||||||
|
# print "Building a composite op with tags", opTags
|
||||||
|
# print "And code", code
|
||||||
|
opNum = len(opTags) - 1
|
||||||
|
# A regular expression to find the operand placeholders we're
|
||||||
|
# interested in.
|
||||||
|
opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
|
||||||
|
tag = opTags[opNum]
|
||||||
|
# Build up a name for this instructions class using the argument
|
||||||
|
# types. Each variation will get its own name this way.
|
||||||
|
postfix = '_' + tag + postfix
|
||||||
|
tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
|
||||||
|
tagMatch = tagParser.search(tag)
|
||||||
|
if tagMatch == None:
|
||||||
|
raise Exception, "Problem parsing operand tag %s" % tag
|
||||||
|
reg = tagMatch.group("tagReg")
|
||||||
|
tagType = tagMatch.group("tagType")
|
||||||
|
tagSize = tagMatch.group("tagSize")
|
||||||
|
if reg:
|
||||||
|
#Figure out what to do with fixed register operands
|
||||||
|
if reg in ("Ax", "Bx", "Cx", "Dx"):
|
||||||
|
code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
|
||||||
|
elif reg == "Al":
|
||||||
|
# We need a way to specify register width
|
||||||
|
code = opRe.sub("{INTREG_RAX}", code)
|
||||||
|
else:
|
||||||
|
print "Didn't know how to encode fixed register %s!" % reg
|
||||||
|
elif tagType == None or tagSize == None:
|
||||||
|
raise Exception, "Problem parsing operand tag: %s" % tag
|
||||||
|
elif tagType == "C" or tagType == "D" or tagType == "G" or \
|
||||||
|
tagType == "P" or tagType == "S" or \
|
||||||
|
tagType == "T" or tagType == "V":
|
||||||
|
# Use the "reg" field of the ModRM byte to select the register
|
||||||
|
code = opRe.sub("{(uint8_t)MODRM_REG}", code)
|
||||||
|
elif tagType == "E" or tagType == "Q" or tagType == "W":
|
||||||
|
# This might refer to memory or to a register. We need to
|
||||||
|
# divide it up farther.
|
||||||
|
regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||||
|
regTags = copy.copy(opTags)
|
||||||
|
regTags.pop(-1)
|
||||||
|
# This needs to refer to memory, but we'll fill in the details
|
||||||
|
# later. It needs to take into account unaligned memory
|
||||||
|
# addresses.
|
||||||
|
memCode = opRe.sub("0", code)
|
||||||
|
memTags = copy.copy(opTags)
|
||||||
|
memTags.pop(-1)
|
||||||
|
return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
|
||||||
|
{"3" : (regCode, regTags, postfix)},
|
||||||
|
(memCode, memTags, postfix))
|
||||||
|
elif tagType == "I" or tagType == "J":
|
||||||
|
# Substitute in an immediate
|
||||||
|
code = opRe.sub("{IMMEDIATE}", code)
|
||||||
|
elif tagType == "M":
|
||||||
|
# This needs to refer to memory, but we'll fill in the details
|
||||||
|
# later. It needs to take into account unaligned memory
|
||||||
|
# addresses.
|
||||||
|
code = opRe.sub("0", code)
|
||||||
|
elif tagType == "PR" or tagType == "R" or tagType == "VR":
|
||||||
|
# There should probably be a check here to verify that mod
|
||||||
|
# is equal to 11b
|
||||||
|
code = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||||
|
else:
|
||||||
|
raise Exception, "Unrecognized tag %s." % tag
|
||||||
|
opTags.pop(-1)
|
||||||
|
|
||||||
|
# At this point, we've built up "code" to have all the necessary extra
|
||||||
|
# instructions needed to implement whatever types of operands were
|
||||||
|
# specified. Now we'll assemble it it into a microOp sequence.
|
||||||
|
ops = assembleMicro(code)
|
||||||
|
|
||||||
|
# Build a macroop to contain the sequence of microops we've
|
||||||
|
# constructed. The decode block will be used to fill in our
|
||||||
|
# inner decode structure, and the rest will be concatenated and
|
||||||
|
# passed back.
|
||||||
|
return genInst(name, Name + postfix, ops)
|
||||||
|
}};
|
||||||
|
|
||||||
|
def format TaggedOp(code, tagSet) {{
|
||||||
|
(header_output,
|
||||||
|
decoder_output,
|
||||||
|
decode_block,
|
||||||
|
exec_output) = doCompOps(name, Name, code, tagSet, '')
|
||||||
|
}};
|
||||||
|
|
||||||
|
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
|
||||||
|
switcher = {}
|
||||||
|
for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
|
||||||
|
switcher[count] = (code, tagSet, '')
|
||||||
|
(header_output,
|
||||||
|
decoder_output,
|
||||||
|
decode_block,
|
||||||
|
exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
|
||||||
}};
|
}};
|
||||||
|
|
|
@ -83,9 +83,14 @@
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////
|
||||||
//
|
//
|
||||||
// Output include file directives.
|
// Output include file directives. Also import the python modules we
|
||||||
|
// need for all the x86 custom decoder stuff
|
||||||
//
|
//
|
||||||
|
|
||||||
|
let {{
|
||||||
|
import copy
|
||||||
|
}};
|
||||||
|
|
||||||
output header {{
|
output header {{
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
|
@ -67,7 +67,18 @@ let {{
|
||||||
self.label = ''
|
self.label = ''
|
||||||
self.args = []
|
self.args = []
|
||||||
|
|
||||||
def getAllocator(self, labelDict = {}):
|
# This converts a list of python bools into
|
||||||
|
# a comma seperated list of C++ bools.
|
||||||
|
def microFlagsText(self, vals):
|
||||||
|
text = ""
|
||||||
|
for val in vals:
|
||||||
|
if val:
|
||||||
|
text += ", true"
|
||||||
|
else:
|
||||||
|
text += ", false"
|
||||||
|
return text
|
||||||
|
|
||||||
|
def getAllocator(self, *microFlags):
|
||||||
args = ''
|
args = ''
|
||||||
for arg in self.args:
|
for arg in self.args:
|
||||||
if arg.has_key("operandConst"):
|
if arg.has_key("operandConst"):
|
||||||
|
@ -75,13 +86,21 @@ let {{
|
||||||
elif arg.has_key("operandCode"):
|
elif arg.has_key("operandCode"):
|
||||||
args += ", %s" % arg["operandCode"]
|
args += ", %s" % arg["operandCode"]
|
||||||
elif arg.has_key("operandLabel"):
|
elif arg.has_key("operandLabel"):
|
||||||
if not labelDict.has_key(arg["operandLabel"]):
|
raise Exception, "Found a label while creating allocator string."
|
||||||
print "Unrecognized label %s!" % arg["operandLabel"]
|
|
||||||
args += ", %s" % labelDict[arg["operandLabel"]]
|
|
||||||
else:
|
else:
|
||||||
print "Unrecognized operand type!"
|
raise Exception, "Unrecognized operand type."
|
||||||
return 'new %s(machInst %s)' % (self.className, args)
|
return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
|
||||||
|
}};
|
||||||
|
|
||||||
|
let {{
|
||||||
|
def buildLabelDict(ops):
|
||||||
|
labels = {}
|
||||||
|
micropc = 0
|
||||||
|
for op in ops:
|
||||||
|
if op.label:
|
||||||
|
labels[op.label] = count
|
||||||
|
micropc += 1
|
||||||
|
return labels
|
||||||
|
|
||||||
def assembleMicro(code):
|
def assembleMicro(code):
|
||||||
# This function takes in a block of microcode assembly and returns
|
# This function takes in a block of microcode assembly and returns
|
||||||
|
@ -113,25 +132,26 @@ let {{
|
||||||
statement = MicroOpStatement()
|
statement = MicroOpStatement()
|
||||||
# Get a line and seperate it from the rest of the code
|
# Get a line and seperate it from the rest of the code
|
||||||
line = lineMatch.group("line")
|
line = lineMatch.group("line")
|
||||||
print "Parsing line %s" % line
|
orig_line = line
|
||||||
|
# print "Parsing line %s" % line
|
||||||
code = lineRe.sub('', code, 1)
|
code = lineRe.sub('', code, 1)
|
||||||
|
|
||||||
# Find the label, if any
|
# Find the label, if any
|
||||||
labelMatch = labelRe.search(line)
|
labelMatch = labelRe.search(line)
|
||||||
if labelMatch != None:
|
if labelMatch != None:
|
||||||
statement.label = labelMatch.group("label")
|
statement.label = labelMatch.group("label")
|
||||||
print "Found label %s." % statement.label
|
# print "Found label %s." % statement.label
|
||||||
# Clear the label from the statement
|
# Clear the label from the statement
|
||||||
line = labelRe.sub('', line, 1)
|
line = labelRe.sub('', line, 1)
|
||||||
|
|
||||||
# Find the class name which is roughly equivalent to the op name
|
# Find the class name which is roughly equivalent to the op name
|
||||||
classMatch = classRe.search(line)
|
classMatch = classRe.search(line)
|
||||||
if classMatch == None:
|
if classMatch == None:
|
||||||
print "Oh no! I can't find what instruction you want!"
|
raise Exception, "Couldn't find class name in statement: %s" \
|
||||||
print "I should really bail out here, but I don't know how!"
|
% orig_line
|
||||||
else:
|
else:
|
||||||
statement.className = classMatch.group("className")
|
statement.className = classMatch.group("className")
|
||||||
print "Found class name %s." % statement.className
|
# print "Found class name %s." % statement.className
|
||||||
|
|
||||||
# Clear the class name from the statement
|
# Clear the class name from the statement
|
||||||
line = classRe.sub('', line, 1)
|
line = classRe.sub('', line, 1)
|
||||||
|
@ -149,24 +169,31 @@ let {{
|
||||||
if opMatch.group(opType):
|
if opMatch.group(opType):
|
||||||
statement.args[-1][opType] = opMatch.group(opType)
|
statement.args[-1][opType] = opMatch.group(opType)
|
||||||
if len(statement.args[-1]) == 0:
|
if len(statement.args[-1]) == 0:
|
||||||
print "I had a problem parsing an operand!"
|
print "Problem parsing operand in statement: %s" \
|
||||||
|
% orig_line
|
||||||
line = opRe.sub('', line, 1)
|
line = opRe.sub('', line, 1)
|
||||||
print "Found operand %s." % statement.args[-1]
|
# print "Found operand %s." % statement.args[-1]
|
||||||
opMatch = opRe.search(line)
|
opMatch = opRe.search(line)
|
||||||
print "Found operands", statement.args
|
# print "Found operands", statement.args
|
||||||
|
|
||||||
# Add this statement to our collection
|
# Add this statement to our collection
|
||||||
statements.append(statement)
|
statements.append(statement)
|
||||||
|
|
||||||
# Get the next line
|
# Get the next line
|
||||||
lineMatch = lineRe.search(code)
|
lineMatch = lineRe.search(code)
|
||||||
return statements
|
|
||||||
|
|
||||||
def buildLabelDict(ops):
|
# Decode the labels into displacements
|
||||||
labels = {}
|
labels = buildLabelDict(statements)
|
||||||
count = 0
|
micropc = 0
|
||||||
for op in ops:
|
for statement in statements:
|
||||||
if op.label:
|
for arg in statement.args:
|
||||||
labels[op.label] = count
|
if arg.has_key("operandLabel"):
|
||||||
count += 1
|
if not labels.has_key(arg["operandLabel"]):
|
||||||
|
raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
|
||||||
|
# This is assuming that intra microcode branches go to
|
||||||
|
# the next micropc + displacement, or
|
||||||
|
# micropc + 1 + displacement.
|
||||||
|
arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
|
||||||
|
micropc += 1
|
||||||
|
return statements
|
||||||
}};
|
}};
|
||||||
|
|
Loading…
Reference in a new issue