Clean up of the SPARC isa_traits. This still doesn't compile, but it's closer.

--HG--
extra : convert_revision : 7b22a4a4af5bcb13e2d9322ef93d3f582e8efa92
This commit is contained in:
Gabe Black 2006-03-07 04:33:40 -05:00
parent 9e43f70ac2
commit 547999eb1f

View file

@ -29,22 +29,24 @@
#ifndef __ARCH_SPARC_ISA_TRAITS_HH__
#define __ARCH_SPARC_ISA_TRAITS_HH__
#include "arch/sparc/faults.hh"
#include "base/misc.hh"
#include "config/full_system.hh"
#include "sim/host.hh"
//This makes sure the big endian versions of certain functions are used.
namespace BigEndianGuest {}
using namespace BigEndianGuest;
#include "arch/sparc/faults.hh"
#include "base/misc.hh"
#include "sim/host.hh"
class ExecContext;
class FastCPU;
//class FullCPU;
//class Checkpoint;
class Checkpoint;
#define TARGET_SPARC
template <class ISA> class StaticInst;
template <class ISA> class StaticInstPtr;
class StaticInst;
class StaticInstPtr;
//namespace EV5
//{
@ -52,479 +54,454 @@ template <class ISA> class StaticInstPtr;
// int ITB_ASN_ASN(uint64_t reg);
//}
class SPARCISA
namespace SparcISA
{
public:
typedef uint32_t MachInst;
typedef uint64_t Addr;
typedef uint8_t RegIndex;
typedef uint32_t MachInst;
typedef uint64_t Addr;
typedef uint8_t RegIndex;
enum
{
MemoryEnd = 0xffffffffffffffffULL,
enum
{
MemoryEnd = 0xffffffffffffffffULL,
NumFloatRegs = 32,
NumMiscRegs = 32,
NumFloatRegs = 32,
NumMiscRegs = 32,
MaxRegsOfAnyType = 32,
// Static instruction parameters
MaxInstSrcRegs = 3,
MaxInstDestRegs = 2,
MaxRegsOfAnyType = 32,
// Static instruction parameters
MaxInstSrcRegs = 3,
MaxInstDestRegs = 2,
// Maximum trap level
MaxTL = 4,
// Maximum trap level
MaxTL = 4
// semantically meaningful register indices
ZeroReg = 0 // architecturally meaningful
// the rest of these depend on the ABI
};
typedef uint64_t IntReg;
// semantically meaningful register indices
ZeroReg = 0, // architecturally meaningful
// the rest of these depend on the ABI
}
typedef uint64_t IntReg;
class IntRegFile
{
class IntRegFile
{
private:
//For right now, let's pretend the register file is static
IntReg regs[32];
//For right now, let's pretend the register file is static
IntReg regs[32];
public:
IntReg & operator [] (RegIndex index)
IntReg & operator [] (RegIndex index)
{
//Don't allow indexes outside of the 32 registers
index &= 0x1F;
return regs[index];
}
};
void serialize(std::ostream & os);
void unserialize(Checkpoint *cp, const std::string &section);
class FloatRegFile
{
private:
//By using the largest data type, we ensure everything
//is aligned correctly in memory
union
{
long double rawRegs[16];
uint64_t regDump[32];
};
class QuadRegs
{
private:
FloatRegFile * parent;
public:
QuadRegs(FloatRegFile * p) : parent(p) {;}
long double & operator [] (RegIndex index)
{
//Quad floats are index by the single
//precision register the start on,
//and only 16 should be accessed
index = (index >> 2) & 0xF;
return parent->rawRegs[index];
}
};
class DoubleRegs
{
private:
FloatRegFile * parent;
public:
DoubleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegIndex index)
{
//Double floats are index by the single
//precision register the start on,
//and only 32 should be accessed
index = (index >> 1) & 0x1F;
return ((double *)parent->rawRegs)[index];
}
};
class SingleRegs
{
private:
FloatRegFile * parent;
public:
SingleRegs(FloatRegFile * p) : parent(p) {;}
float & operator [] (RegIndex index)
{
//Only 32 single floats should be accessed
index &= 0x1F;
return ((float *)parent->rawRegs)[index];
}
};
public:
void serialize(std::ostream & os);
void unserialize(Checkpoint * cp, std::string & section);
QuadRegs quadRegs;
DoubleRegs doubleRegs;
SingleRegs singleRegs;
FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this)
{;}
};
// control register file contents
typedef uint64_t MiscReg;
// The control registers, broken out into fields
class MiscRegFile
{
public:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
};
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
const uint64_t :32; // reserved bits
} yFields;
};
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured
// on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
//Don't allow indexes outside of the 32 registers
index &= 0x1F
return regs[index];
}
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields:4;
} :4;
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields:4;
} :4;
} ccrFields;
};
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from
// previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from
// previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
const uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
const uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
};
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
}
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
};
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
const uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
const uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
};
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexecFields:5;
} :5;
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexecFields:5;
} :5;
uint64_t fcc0:2; // Floating-Point condtion codes
const uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
const uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields:5;
} :5;
const uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
const uint64_t :26; // Reserved bits
} fsrFields;
}
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
uint8_t dl:1; // Dirty lower
uint8_t du:1; // Dirty upper
fef:1; // FPRS enable floating-Point
} fprsFields;
};
void inline serialize(std::ostream & os)
void serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regs, 32);
SERIALIZE_SCALAR(pstate);
SERIAlIZE_SCALAR(tba);
SERIALIZE_SCALAR(y);
SERIALIZE_SCALAR(pil);
SERIALIZE_SCALAR(cwp);
SERIALIZE_ARRAY(tt, MaxTL);
SERIALIZE_SCALAR(ccr);
SERIALIZE_SCALAR(asi);
SERIALIZE_SCALAR(tl);
SERIALIZE_SCALAR(tpc);
SERIALIZE_SCALAR(tnpc);
SERIALIZE_ARRAY(tstate, MaxTL);
SERIALIZE_SCALAR(tick);
SERIALIZE_SCALAR(cansave);
SERIALIZE_SCALAR(canrestore);
SERIALIZE_SCALAR(otherwin);
SERIALIZE_SCALAR(cleanwin);
SERIALIZE_SCALAR(wstate);
SERIALIZE_SCALAR(ver);
SERIALIZE_SCALAR(fsr);
SERIALIZE_SCALAR(fprs);
}
void inline unserialize(Checkpoint &*cp, const std::string &section)
void unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_ARRAY(regs, 32);
UNSERIALIZE_SCALAR(pstate);
UNSERIAlIZE_SCALAR(tba);
UNSERIALIZE_SCALAR(y);
UNSERIALIZE_SCALAR(pil);
UNSERIALIZE_SCALAR(cwp);
UNSERIALIZE_ARRAY(tt, MaxTL);
UNSERIALIZE_SCALAR(ccr);
UNSERIALIZE_SCALAR(asi);
UNSERIALIZE_SCALAR(tl);
UNSERIALIZE_SCALAR(tpc);
UNSERIALIZE_SCALAR(tnpc);
UNSERIALIZE_ARRAY(tstate, MaxTL);
UNSERIALIZE_SCALAR(tick);
UNSERIALIZE_SCALAR(cansave);
UNSERIALIZE_SCALAR(canrestore);
UNSERIALIZE_SCALAR(otherwin);
UNSERIALIZE_SCALAR(cleanwin);
UNSERIALIZE_SCALAR(wstate);
UNSERIALIZE_SCALAR(ver);
UNSERIALIZE_SCALAR(fsr);
UNSERIALIZE_SCALAR(fprs);
}
};
class FloatRegFile
{
private:
//By using the largest data type, we ensure everything
//is aligned correctly in memory
union
{
double double rawRegs[16];
uint64_t regDump[32];
};
class QuadRegs
{
private:
FloatRegFile * parent;
public:
QuadRegs(FloatRegFile * p) : parent(p) {;}
double double & operator [] (RegIndex index)
{
//Quad floats are index by the single
//precision register the start on,
//and only 16 should be accessed
index = (index >> 2) & 0xF;
return parent->rawRegs[index];
}
};
class DoubleRegs
{
private:
FloatRegFile * parent;
public:
DoubleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegIndex index)
{
//Double floats are index by the single
//precision register the start on,
//and only 32 should be accessed
index = (index >> 1) & 0x1F
return ((double [])parent->rawRegs)[index];
}
}
class SingleRegs
{
private:
FloatRegFile * parent;
public:
SingleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegFile index)
{
//Only 32 single floats should be accessed
index &= 0x1F
return ((float [])parent->rawRegs)[index];
}
}
public:
void inline serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regDump, 32);
}
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
void inline unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_ARRAY(regDump, 32);
}
struct RegFile
{
IntRegFile intRegFile; // (signed) integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
QuadRegs quadRegs;
DoubleRegs doubleRegs;
SingleRegs singleRegs;
FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this)
{;}
};
Addr pc; // Program Counter
Addr npc; // Next Program Counter
// control register file contents
typedef uint64_t MiscReg;
// The control registers, broken out into fields
class MiscRegFile
{
public:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
}
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
const uint64_t :32; // reserved bits
} yFields;
}
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields:4;
} :4;
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields:4;
} :4;
} ccrFields;
}
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
const uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
const uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
}
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
}
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
}
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
const uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
const uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
}
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexecFields:5;
} :5;
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexecFields:5;
} :5;
uint64_t fcc0:2; // Floating-Point condtion codes
const uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
const uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields:5;
} :5;
const uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
const uint64_t :26; // Reserved bits
} fsrFields;
}
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
dl:1; // Dirty lower
du:1; // Dirty upper
fef:1; // FPRS enable floating-Point
} fprsFields;
};
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
void serialize(std::ostream & os)
{
SERIALIZE_SCALAR(pstate);
SERIAlIZE_SCALAR(tba);
SERIALIZE_SCALAR(y);
SERIALIZE_SCALAR(pil);
SERIALIZE_SCALAR(cwp);
SERIALIZE_ARRAY(tt, MaxTL);
SERIALIZE_SCALAR(ccr);
SERIALIZE_SCALAR(asi);
SERIALIZE_SCALAR(tl);
SERIALIZE_SCALAR(tpc);
SERIALIZE_SCALAR(tnpc);
SERIALIZE_ARRAY(tstate, MaxTL);
SERIALIZE_SCALAR(tick);
SERIALIZE_SCALAR(cansave);
SERIALIZE_SCALAR(canrestore);
SERIALIZE_SCALAR(otherwin);
SERIALIZE_SCALAR(cleanwin);
SERIALIZE_SCALAR(wstate);
SERIALIZE_SCALAR(ver);
SERIALIZE_SCALAR(fsr);
SERIALIZE_SCALAR(fprs);
}
static StaticInstPtr decodeInst(MachInst);
void unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_SCALAR(pstate);
UNSERIAlIZE_SCALAR(tba);
UNSERIALIZE_SCALAR(y);
UNSERIALIZE_SCALAR(pil);
UNSERIALIZE_SCALAR(cwp);
UNSERIALIZE_ARRAY(tt, MaxTL);
UNSERIALIZE_SCALAR(ccr);
UNSERIALIZE_SCALAR(asi);
UNSERIALIZE_SCALAR(tl);
UNSERIALIZE_SCALAR(tpc);
UNSERIALIZE_SCALAR(tnpc);
UNSERIALIZE_ARRAY(tstate, MaxTL);
UNSERIALIZE_SCALAR(tick);
UNSERIALIZE_SCALAR(cansave);
UNSERIALIZE_SCALAR(canrestore);
UNSERIALIZE_SCALAR(otherwin);
UNSERIALIZE_SCALAR(cleanwin);
UNSERIALIZE_SCALAR(wstate);
UNSERIALIZE_SCALAR(ver);
UNSERIALIZE_SCALAR(fsr);
UNSERIALIZE_SCALAR(fprs);
}
};
// return a no-op instruction... used for instruction fetch faults
static const MachInst NoopMachInst;
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr)
{
return addr;
}
struct RegFile
{
IntRegFile intRegFile; // (signed) integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
static inline Addr fetchPCToRealPC(const Addr &addr)
{
return addr;
}
Addr pc; // Program Counter
Addr npc; // Next Program Counter
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize()
{
return sizeof(MachInst);
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
static StaticInstPtr<AlphaISA> decodeInst(MachInst);
// return a no-op instruction... used for instruction fetch faults
static const MachInst NoopMachInst;
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr)
{
return addr;
}
static inline Addr fetchPCToRealPC(const Addr &addr)
{
return addr;
}
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize()
{
return sizeof(MachInst);
}
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
static void zeroRegisters(XC *xc);
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
static void zeroRegisters(XC *xc);
};
typedef SPARCISA TheISA;
typedef TheISA::MachInst MachInst;
typedef TheISA::Addr Addr;
typedef TheISA::RegIndex RegIndex;
typedef TheISA::IntReg IntReg;
typedef TheISA::IntRegFile IntRegFile;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegFile FloatRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::AnyReg AnyReg;
typedef TheISA::RegFile RegFile;
const int VMPageSize = TheISA::VMPageSize;
const int LogVMPageSize = TheISA::LogVMPageSize;
const int ZeroReg = TheISA::ZeroReg;
const int BranchPredAddrShiftAmt = TheISA::BranchPredAddrShiftAmt;
const int MaxAddr = (Addr)-1;
#ifndef FULL_SYSTEM
class SyscallReturn {
public:
template <class T>
SyscallReturn(T v, bool s)
{
retval = (uint64_t)v;
success = s;
}
#if !FULL_SYSTEM
class SyscallReturn
{
public:
template <class T>
SyscallReturn(T v, bool s)
{
retval = (uint64_t)v;
success = s;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
retval = (uint64_t)v;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
retval = (uint64_t)v;
}
~SyscallReturn() {}
~SyscallReturn() {}
SyscallReturn& operator=(const SyscallReturn& s) {
retval = s.retval;
success = s.success;
return *this;
}
SyscallReturn& operator=(const SyscallReturn& s)
{
retval = s.retval;
success = s.success;
return *this;
}
bool successful() { return success; }
uint64_t value() { return retval; }
bool successful() { return success; }
uint64_t value() { return retval; }
private:
uint64_t retval;
bool success;
private:
uint64_t retval;
bool success;
};
#endif
#ifdef FULL_SYSTEM
#if FULL_SYSTEM
#include "arch/alpha/ev5.hh"
#endif