Better handling of latency/frequency parameter types

python/m5/config.py:
    Addr is slightly different from memory size in that Addr
    will take non strings.
    Deal with the fact that the convert.toFoo functions only accept
    strings.
    Add RootFrequency as a special type for the Root.frequency
    parameter which is not scaled.
    Add ClockPeriod parameter type.
python/m5/convert.py:
    Be more strict about what's allowed.
    Only accept strings as inputs for these conversion functions.
    If the user wants to accept something else, they need to deal
    with the failure and convert other types on their own.
python/m5/objects/Bus.mpy:
    Use the new ClockPeriod parameter type
python/m5/objects/Root.mpy:
    Can't use integers for frequency anymore
python/m5/smartdict.py:
    rename SmartDict.Proxy to just Variable.  Create a new class
    UndefinedVariable that is returned when the user tries to get
    a variable that is not in the dict.  Undefined variable evaluates
    to false, and will cause an error elsewhere.

--HG--
extra : convert_revision : 1d55246fd1af65106f102396234827d6401ef9ce
This commit is contained in:
Nathan Binkert 2005-03-25 22:59:29 -05:00
parent 7e1995a29c
commit 40bab977bc
5 changed files with 337 additions and 207 deletions

View file

@ -1160,8 +1160,24 @@ class MemorySize(CheckedInt):
return '%d' % value
_string = classmethod(_string)
class Addr(MemorySize):
pass
class Addr(CheckedInt):
cppname = 'Addr'
size = 64
unsigned = True
def __new__(cls, value):
try:
value = long(toMemorySize(value))
except TypeError:
value = long(value)
return super(Addr, cls).__new__(cls, value)
def _convert(cls, value):
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
return '%d' % value
_string = classmethod(_string)
class AddrRange(Range):
type = Addr
@ -1169,15 +1185,18 @@ class AddrRange(Range):
# Boolean parameter type.
class Bool(ParamType):
_cpp_param_decl = 'bool'
#def __new__(cls, value):
# return super(MemorySize, cls).__new__(cls, toBool(value))
def __init__(self, value):
try:
self.value = toBool(value)
except TypeError:
self.value = bool(value)
def _convert(cls, value):
return toBool(value)
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
if value:
if value.value:
return "true"
else:
return "false"
@ -1344,42 +1363,109 @@ class Enum(ParamType):
def _string(self, value):
return str(value)
_string = classmethod(_string)
root_frequency = None
#
# "Constants"... handy aliases for various values.
#
class Frequency(int,ParamType):
class RootFrequency(float,ParamType):
_cpp_param_decl = 'Tick'
def __new__(cls, value):
if isinstance(value, basestring):
val = int(env['FREQUENCY'] / toFrequency(value))
else:
val = toFrequency(value)
return super(cls, Frequency).__new__(cls, val)
return super(cls, RootFrequency).__new__(cls, toFrequency(value))
def _convert(cls, value):
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
return '%d' % value
return '%d' % int(value)
_string = classmethod(_string)
class Latency(int,ParamType):
class ClockPeriod(float,ParamType):
_cpp_param_decl = 'Tick'
def __new__(cls, value):
if isinstance(value, basestring):
val = int(env['FREQUENCY'] * toLatency(value))
else:
val = toLatency(value)
return super(cls, Latency).__new__(cls, val)
relative = False
try:
val = toClockPeriod(value)
except ValueError, e:
relative = True
if value.endswith('f'):
val = float(value[:-1])
if val:
val = 1 / val
elif value.endswith('c'):
val = float(value[:-1])
else:
raise e
self = super(cls, ClockPeriod).__new__(cls, val)
self.relative = relative
return self
def _convert(cls, value):
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
if not value.relative:
value *= root_frequency
return '%d' % int(value)
_string = classmethod(_string)
class Frequency(float,ParamType):
_cpp_param_decl = 'Tick'
def __new__(cls, value):
relative = False
try:
val = toFrequency(value)
except ValueError, e:
if value.endswith('f'):
val = float(value[:-1])
relative = True
else:
raise e
self = super(cls, Frequency).__new__(cls, val)
self.relative = relative
return self
def _convert(cls, value):
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
if not value.relative:
value = root_frequency / value
return '%d' % int(value)
_string = classmethod(_string)
class Latency(float,ParamType):
_cpp_param_decl = 'Tick'
def __new__(cls, value):
relative = False
try:
val = toLatency(value)
except ValueError, e:
if value.endswith('c'):
val = float(value[:-1])
relative = True
else:
raise e
self = super(cls, Latency).__new__(cls, val)
self.relative = relative
return self
def _convert(cls, value):
return cls(value)
_convert = classmethod(_convert)
def _string(cls, value):
if not value.relative:
value *= root_frequency
return '%d' % value
_string = classmethod(_string)
@ -1394,7 +1480,9 @@ AllMemory = AddrRange(0, MaxAddr)
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(root):
global root_frequency
instance = root.instantiate('root')
root_frequency = RootFrequency._convert(root.frequency._getattr())
instance.fixup()
instance.display()
if not noDot:
@ -1427,6 +1515,7 @@ __all__ = ['ConfigNode', 'SimObject', 'ParamContext', 'Param', 'VectorParam',
'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
'Int32', 'UInt32', 'Int64', 'UInt64',
'Counter', 'Addr', 'Tick', 'Percent',
'MemorySize', 'Frequency', 'Latency',
'MemorySize', 'RootFrequency', 'Frequency', 'Latency',
'ClockPeriod',
'Range', 'AddrRange', 'MaxAddr', 'MaxTick', 'AllMemory', 'NULL',
'NextEthernetAddr', 'instantiate']

View file

@ -22,162 +22,185 @@ pebi = tebi * 1024
exbi = pebi * 1024
# memory size configuration stuff
def toInteger(value):
def toFloat(value):
if not isinstance(value, str):
result = int(value)
elif value.endswith('Ei'):
result = int(value[:-2]) * exbi
raise TypeError, "wrong type '%s' should be str" % type(value)
if value.endswith('Ei'):
return float(value[:-2]) * exbi
elif value.endswith('Pi'):
result = int(value[:-2]) * pebi
return float(value[:-2]) * pebi
elif value.endswith('Ti'):
result = int(value[:-2]) * tebi
return float(value[:-2]) * tebi
elif value.endswith('Gi'):
result = int(value[:-2]) * gibi
return float(value[:-2]) * gibi
elif value.endswith('Mi'):
result = int(value[:-2]) * mebi
return float(value[:-2]) * mebi
elif value.endswith('ki'):
result = int(value[:-2]) * kibi
return float(value[:-2]) * kibi
elif value.endswith('E'):
result = int(value[:-1]) * exa
return float(value[:-1]) * exa
elif value.endswith('P'):
result = int(value[:-1]) * peta
return float(value[:-1]) * peta
elif value.endswith('T'):
result = int(value[:-1]) * tera
return float(value[:-1]) * tera
elif value.endswith('G'):
result = int(value[:-1]) * giga
return float(value[:-1]) * giga
elif value.endswith('M'):
result = int(value[:-1]) * mega
return float(value[:-1]) * mega
elif value.endswith('k'):
result = int(value[:-1]) * kilo
return float(value[:-1]) * kilo
elif value.endswith('m'):
result = int(value[:-1]) * milli
return float(value[:-1]) * milli
elif value.endswith('u'):
result = int(value[:-1]) * micro
return float(value[:-1]) * micro
elif value.endswith('n'):
result = int(value[:-1]) * nano
return float(value[:-1]) * nano
elif value.endswith('p'):
result = int(value[:-1]) * pico
return float(value[:-1]) * pico
elif value.endswith('f'):
result = int(value[:-1]) * femto
return float(value[:-1]) * femto
else:
result = int(float(value))
return float(value)
def toLong(value):
value = toFloat(value)
result = int(value)
if value != result:
raise ValueError, "cannot convert '%s' to long" % value
return result
def toBool(val):
t = type(val)
if t == bool:
return val
def toInteger(value):
value = toFloat(value)
result = int(value)
if value != result:
raise ValueError, "cannot convert '%s' to integer" % value
if t == None:
return result
def toBool(value):
if not isinstance(value, str):
raise TypeError, "wrong type '%s' should be str" % type(value)
value = value.lower()
if value == "true" or value == "t" or value == "yes" or value == "y":
return True
elif value == "false" or value == "f" or value == "no" or value == "n":
return False
if t == int or t == long:
return bool(val)
if t == str:
val = val.lower()
if val == "true" or val == "t" or val == "yes" or val == "y":
return True
elif val == "false" or val == "f" or val == "no" or val == "n":
return False
elif val == "":
return False
return toInteger(val) != 0
raise ValueError, "cannot convert '%s' to bool" % value
def toFrequency(value):
if not isinstance(value, str):
result = float(value)
elif value.endswith('THz'):
result = float(value[:-3]) * tera
elif value.endswith('GHz'):
result = float(value[:-3]) * giga
elif value.endswith('MHz'):
result = float(value[:-3]) * mega
elif value.endswith('kHz'):
result = float(value[:-3]) * kilo
elif value.endswith('Hz'):
result = float(value[:-2])
else:
result = float(value)
raise TypeError, "wrong type '%s' should be str" % type(value)
return result
if value.endswith('THz'):
return float(value[:-3]) * tera
elif value.endswith('GHz'):
return float(value[:-3]) * giga
elif value.endswith('MHz'):
return float(value[:-3]) * mega
elif value.endswith('kHz'):
return float(value[:-3]) * kilo
elif value.endswith('Hz'):
return float(value[:-2])
raise ValueError, "cannot convert '%s' to frequency" % value
def toLatency(value):
if not isinstance(value, str):
result = float(value)
elif value.endswith('c'):
result = float(value[:-1])
elif value.endswith('ps'):
result = float(value[:-2]) * pico
elif value.endswith('ns'):
result = float(value[:-2]) * nano
elif value.endswith('us'):
result = float(value[:-2]) * micro
elif value.endswith('ms'):
result = float(value[:-2]) * milli
elif value.endswith('s'):
result = float(value[:-1])
else:
result = float(value)
raise TypeError, "wrong type '%s' should be str" % type(value)
if value.endswith('ps'):
return float(value[:-2]) * pico
elif value.endswith('ns'):
return float(value[:-2]) * nano
elif value.endswith('us'):
return float(value[:-2]) * micro
elif value.endswith('ms'):
return float(value[:-2]) * milli
elif value.endswith('s'):
return float(value[:-1])
raise ValueError, "cannot convert '%s' to latency" % value
def toClockPeriod(value):
"""result is a clock period"""
if not isinstance(value, str):
raise TypeError, "wrong type '%s' should be str" % type(value)
try:
val = toFrequency(value)
if val != 0:
val = 1 / val
return val
except ValueError:
pass
try:
val = toLatency(value)
return val
except ValueError:
pass
raise ValueError, "cannot convert '%s' to clock period" % value
return result;
def toNetworkBandwidth(value):
if not isinstance(value, str):
result = float(value)
elif value.endswith('Tbps'):
result = float(value[:-3]) * tera
elif value.endswith('Gbps'):
result = float(value[:-3]) * giga
elif value.endswith('Mbps'):
result = float(value[:-3]) * mega
elif value.endswith('kbps'):
result = float(value[:-3]) * kilo
elif value.endswith('bps'):
result = float(value[:-2])
else:
result = float(value)
raise TypeError, "wrong type '%s' should be str" % type(value)
return result
if value.endswith('Tbps'):
return float(value[:-3]) * tera
elif value.endswith('Gbps'):
return float(value[:-3]) * giga
elif value.endswith('Mbps'):
return float(value[:-3]) * mega
elif value.endswith('kbps'):
return float(value[:-3]) * kilo
elif value.endswith('bps'):
return float(value[:-2])
else:
return float(value)
raise ValueError, "cannot convert '%s' to network bandwidth" % value
def toMemoryBandwidth(value):
if not isinstance(value, str):
result = int(value)
elif value.endswith('PB/s'):
result = int(value[:-4]) * pebi
elif value.endswith('TB/s'):
result = int(value[:-4]) * tebi
elif value.endswith('GB/s'):
result = int(value[:-4]) * gibi
elif value.endswith('MB/s'):
result = int(value[:-4]) * mebi
elif value.endswith('kB/s'):
result = int(value[:-4]) * kibi
elif value.endswith('B/s'):
result = int(value[:-3])
else:
result = int(value)
raise TypeError, "wrong type '%s' should be str" % type(value)
return result
if value.endswith('PB/s'):
return float(value[:-4]) * pebi
elif value.endswith('TB/s'):
return float(value[:-4]) * tebi
elif value.endswith('GB/s'):
return float(value[:-4]) * gibi
elif value.endswith('MB/s'):
return float(value[:-4]) * mebi
elif value.endswith('kB/s'):
return float(value[:-4]) * kibi
elif value.endswith('B/s'):
return float(value[:-3])
raise ValueError, "cannot convert '%s' to memory bandwidth" % value
def toMemorySize(value):
if not isinstance(value, str):
result = int(value)
elif value.endswith('PB'):
result = int(value[:-2]) * pebi
elif value.endswith('TB'):
result = int(value[:-2]) * tebi
elif value.endswith('GB'):
result = int(value[:-2]) * gibi
elif value.endswith('MB'):
result = int(value[:-2]) * mebi
elif value.endswith('kB'):
result = int(value[:-2]) * kibi
elif value.endswith('B'):
result = int(value[:-1])
else:
result = int(value)
raise TypeError, "wrong type '%s' should be str" % type(value)
return result
if value.endswith('PB'):
return float(value[:-2]) * pebi
elif value.endswith('TB'):
return float(value[:-2]) * tebi
elif value.endswith('GB'):
return float(value[:-2]) * gibi
elif value.endswith('MB'):
return float(value[:-2]) * mebi
elif value.endswith('kB'):
return float(value[:-2]) * kibi
elif value.endswith('B'):
return float(value[:-1])
raise ValueError, "cannot convert '%s' to memory size" % value

View file

@ -2,5 +2,5 @@ from BaseHier import BaseHier
simobj Bus(BaseHier):
type = 'Bus'
clock_ratio = Param.Frequency("ratio of CPU to bus frequency")
clock_ratio = Param.ClockPeriod("ratio of CPU to bus frequency")
width = Param.Int("bus width in bytes")

View file

@ -5,7 +5,7 @@ from Trace import Trace
simobj Root(SimObject):
type = 'Root'
frequency = Param.Tick(200000000, "tick frequency")
frequency = Param.RootFrequency('200MHz', "tick frequency")
output_file = Param.String('cout', "file to dump simulator output to")
full_system = Param.Bool("Full system simulation?")
hier = HierParams(do_data = False, do_events = True)

View file

@ -16,93 +16,111 @@
from convert import *
class Variable(str):
"""Intelligent proxy class for SmartDict. Variable will use the
various convert functions to attempt to convert values to useable
types"""
def __int__(self):
return toInteger(str(self))
def __long__(self):
return toLong(str(self))
def __float__(self):
return toFloat(str(self))
def __nonzero__(self):
return toBool(str(self))
def convert(self, other):
t = type(other)
if t == bool:
return bool(self)
if t == int:
return int(self)
if t == long:
return long(self)
if t == float:
return float(self)
return str(self)
def __lt__(self, other):
return self.convert(other) < other
def __le__(self, other):
return self.convert(other) <= other
def __eq__(self, other):
return self.convert(other) == other
def __ne__(self, other):
return self.convert(other) != other
def __gt__(self, other):
return self.convert(other) > other
def __ge__(self, other):
return self.convert(other) >= other
def __add__(self, other):
return self.convert(other) + other
def __sub__(self, other):
return self.convert(other) - other
def __mul__(self, other):
return self.convert(other) * other
def __div__(self, other):
return self.convert(other) / other
def __truediv__(self, other):
return self.convert(other) / other
def __radd__(self, other):
return other + self.convert(other)
def __rsub__(self, other):
return other - self.convert(other)
def __rmul__(self, other):
return other * self.convert(other)
def __rdiv__(self, other):
return other / self.convert(other)
def __rtruediv__(self, other):
return other / self.convert(other)
class UndefinedVariable(object):
"""Placeholder class to represent undefined variables. Will
generally cause an exception whenever it is used, but evaluates to
zero for boolean truth testing such as in an if statement"""
def __nonzero__(self):
return False
class SmartDict(dict):
"""Dictionary class that holds strings, but intelligently converts
those strings to other types depending on their usage"""
class Proxy(str):
def __int__(self):
return int(toInteger(str(self)))
def __long__(self):
return long(toInteger(str(self)))
def __float__(self):
return float(toInteger(str(self)))
def __nonzero__(self):
return toBool(str(self))
def convert(self, other):
t = type(other)
if t == bool:
return bool(self)
if t == int:
return int(self)
if t == long:
return long(self)
if t == float:
return float(self)
return str(self)
def __lt__(self, other):
return self.convert(other) < other
def __le__(self, other):
return self.convert(other) <= other
def __eq__(self, other):
return self.convert(other) == other
def __ne__(self, other):
return self.convert(other) != other
def __gt__(self, other):
return self.convert(other) > other
def __ge__(self, other):
return self.convert(other) >= other
def __add__(self, other):
return self.convert(other) + other
def __sub__(self, other):
return self.convert(other) - other
def __mul__(self, other):
return self.convert(other) * other
def __div__(self, other):
return self.convert(other) / other
def __truediv__(self, other):
return self.convert(other) / other
def __radd__(self, other):
return other + self.convert(other)
def __rsub__(self, other):
return other - self.convert(other)
def __rmul__(self, other):
return other * self.convert(other)
def __rdiv__(self, other):
return other / self.convert(other)
def __rtruediv__(self, other):
return other / self.convert(other)
# __getitem__ uses dict.get() to return 'False' if the key is not
# found (rather than raising KeyError). Note that this does *not*
# set the key's value to 'False' in the dict, so that even after
# we call env['foo'] we still get a meaningful answer from "'foo'
# in env" (which calls dict.__contains__, which we do not
# override).
def __getitem__(self, key):
return self.Proxy(dict.get(self, key, 'False'))
"""returns a Variable proxy if the values exists in the database and
returns an UndefinedVariable otherwise"""
if key in self:
return Variable(dict.get(self, key))
else:
# Note that this does *not* change the contents of the dict,
# so that even after we call env['foo'] we still get a
# meaningful answer from "'foo' in env" (which
# calls dict.__contains__, which we do not override).
return UndefinedVariable()
def __setitem__(self, key, item):
"""intercept the setting of any variable so that we always
store strings in the dict"""
dict.__setitem__(self, key, str(item))
def values(self):
return [ self.Proxy(v) for v in dict.values(self) ]
return [ Variable(v) for v in dict.values(self) ]
def itervalues(self):
for value in dict.itervalues(self):
yield self.Proxy(value)
yield Variable(value)
def items(self):
return [ (k, self.Proxy(v)) for k,v in dict.items(self) ]
return [ (k, Variable(v)) for k,v in dict.items(self) ]
def iteritems(self):
for key,value in dict.iteritems(self):
yield key, self.Proxy(value)
yield key, Variable(value)
def get(self, key, default='False'):
return self.Proxy(dict.get(self, key, str(default)))
return Variable(dict.get(self, key, str(default)))
def setdefault(self, key, default='False'):
return self.Proxy(dict.setdefault(self, key, str(default)))
return Variable(dict.setdefault(self, key, str(default)))
__all__ = [ 'SmartDict' ]