Merge zizzer.eecs.umich.edu:/bk/newmem

into  ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem-o3-spec

--HG--
extra : convert_revision : b7e89d32df946ea24c438292308f5fc8248f8bd9
This commit is contained in:
Gabe Black 2007-04-06 14:37:46 +00:00
commit 3c9768e644
11 changed files with 482 additions and 179 deletions

View file

@ -866,7 +866,11 @@ class Format:
context = {}
updateExportContext()
context.update(exportContext)
context.update({ 'name': name, 'Name': string.capitalize(name) })
if len(name):
Name = name[0].upper()
if len(name) > 1:
Name += name[1:]
context.update({ 'name': name, 'Name': Name })
try:
vars = self.func(self.user_code, context, *args[0], **args[1])
except Exception, exc:
@ -1028,7 +1032,7 @@ def substBitOps(code):
# Template objects are format strings that allow substitution from
# the attribute spaces of other objects (e.g. InstObjParams instances).
labelRE = re.compile(r'[^%]%\(([^\)]+)\)[sd]')
labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
class Template:
def __init__(self, t):

View file

@ -63,21 +63,89 @@ namespace X86ISA
enum IntRegIndex
{
INTREG_RAX,
INTREG_EAX = INTREG_RAX,
INTREG_AX = INTREG_RAX,
INTREG_AL = INTREG_RAX,
INTREG_AH = INTREG_RAX,
INTREG_RCX,
INTREG_ECX = INTREG_RCX,
INTREG_CX = INTREG_RCX,
INTREG_CL = INTREG_RCX,
INTREG_CH = INTREG_RCX,
INTREG_RDX,
INTREG_EDX = INTREG_RDX,
INTREG_DX = INTREG_RDX,
INTREG_DL = INTREG_RDX,
INTREG_DH = INTREG_RDX,
INTREG_RBX,
INTREG_EBX = INTREG_RBX,
INTREG_BX = INTREG_RBX,
INTREG_BL = INTREG_RBX,
INTREG_BH = INTREG_RBX,
INTREG_RSP,
INTREG_ESP = INTREG_RSP,
INTREG_SP = INTREG_RSP,
INTREG_SPL = INTREG_RSP,
INTREG_RBP,
INTREG_EBP = INTREG_RBP,
INTREG_BP = INTREG_RBP,
INTREG_BPL = INTREG_RBP,
INTREG_RSI,
INTREG_ESI = INTREG_RSI,
INTREG_SI = INTREG_RSI,
INTREG_SIL = INTREG_RSI,
INTREG_RDI,
INTREG_R8W,
INTREG_R9W,
INTREG_R10W,
INTREG_R11W,
INTREG_R12W,
INTREG_R13W,
INTREG_R14W,
INTREG_R15W,
INTREG_EDI = INTREG_RDI,
INTREG_DI = INTREG_RDI,
INTREG_DIL = INTREG_RDI,
INTREG_R8,
INTREG_R8D = INTREG_R8,
INTREG_R8W = INTREG_R8,
INTREG_R8B = INTREG_R8,
INTREG_R9,
INTREG_R9D = INTREG_R9,
INTREG_R9W = INTREG_R9,
INTREG_R9B = INTREG_R9,
INTREG_R10,
INTREG_R10D = INTREG_R10,
INTREG_R10W = INTREG_R10,
INTREG_R10B = INTREG_R10,
INTREG_R11,
INTREG_R11D = INTREG_R11,
INTREG_R11W = INTREG_R11,
INTREG_R11B = INTREG_R11,
INTREG_R12,
INTREG_R12D = INTREG_R12,
INTREG_R12W = INTREG_R12,
INTREG_R12B = INTREG_R12,
INTREG_R13,
INTREG_R13D = INTREG_R13,
INTREG_R13W = INTREG_R13,
INTREG_R13B = INTREG_R13,
INTREG_R14,
INTREG_R14D = INTREG_R14,
INTREG_R14W = INTREG_R14,
INTREG_R14B = INTREG_R14,
INTREG_R15,
INTREG_R15D = INTREG_R15,
INTREG_R15W = INTREG_R15,
INTREG_R15B = INTREG_R15,
NUM_INTREGS
};
};

View file

@ -61,15 +61,12 @@
0x1: decode OPCODE_OP_TOP5 {
format WarnUnimpl {
0x00: decode OPCODE_OP_BOTTOM3 {
0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
0x4: Inst::add(rAl,Ib);
0x5: Inst::add(rAx,Iz);
0x6: push_ES();
0x7: pop_ES();
default: MultiOp::add(
{{Add %0 %0 %1}},
OPCODE_OP_BOTTOM3,
[[Eb,Gb],[Ev,Gv],
[Gb,Eb],[Gv,Ev]]);
default: MultiInst::add(OPCODE_OP_BOTTOM3,
[Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
}
0x01: decode OPCODE_OP_BOTTOM3 {
0x0: or_Eb_Gb();
@ -126,16 +123,13 @@
0x7: das();
}
0x06: decode OPCODE_OP_BOTTOM3 {
0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
0x4: Inst::xor(rAl,Ib);
0x5: Inst::xor(rAx,Iz);
0x6: M5InternalError::error(
{{"Tried to execute the SS segment override prefix!"}});
0x7: aaa();
default: MultiOp::xor(
{{Xor %0 %0 %1}},
OPCODE_OP_BOTTOM3,
[[Eb,Gb],[Ev,Gv],
[Gb,Eb],[Gv,Ev]]);
default: MultiInst::xor(OPCODE_OP_BOTTOM3,
[Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
}
0x07: decode OPCODE_OP_BOTTOM3 {
0x0: cmp_Eb_Gb();

View file

@ -61,151 +61,26 @@
//
let {{
# This builds either a regular or macro op to implement the sequence of
# ops we give it.
def genInst(name, Name, ops):
# If we can implement this instruction with exactly one microop, just
# use that directly.
newStmnt = ''
if len(ops) == 1:
decode_block = "return (X86StaticInst *)(%s);" % \
ops[0].getAllocator()
return ('', '', decode_block, '')
else:
# Build a macroop to contain the sequence of microops we've
# been given.
return genMacroOp(name, Name, ops)
def doInst(name, Name, opTypeSet):
if not instDict.has_key(Name):
raise Exception, "Unrecognized instruction: %s" % Name
inst = instDict[Name]()
return inst.emit(opTypeSet)
}};
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
def doMultiOp(name, Name, builder, switchVal, vals, default = None):
header_output = ''
decoder_output = ''
decode_block = 'switch(%s) {\n' % switchVal
exec_output = ''
for (val, todo) in vals.items():
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *todo)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
exec_output += new_exec_output
if default:
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *default)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tdefault: %s\n' % new_decode_block
exec_output += new_exec_output
decode_block += '}\n'
return (header_output, decoder_output, decode_block, exec_output)
}};
let {{
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTags". These are "implemented"
# in reverse order.
def doCompOps(name, Name, code, opTags, postfix):
opNum = len(opTags) - 1
while len(opTags):
# print "Building a composite op with tags", opTags
# print "And code", code
opNum = len(opTags) - 1
# A regular expression to find the operand placeholders we're
# interested in.
opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
tag = opTags[opNum]
# Build up a name for this instructions class using the argument
# types. Each variation will get its own name this way.
postfix = '_' + tag + postfix
tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
tagMatch = tagParser.search(tag)
if tagMatch == None:
raise Exception, "Problem parsing operand tag %s" % tag
reg = tagMatch.group("tagReg")
tagType = tagMatch.group("tagType")
tagSize = tagMatch.group("tagSize")
if reg:
#Figure out what to do with fixed register operands
if reg in ("Ax", "Bx", "Cx", "Dx"):
code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
elif reg == "Al":
# We need a way to specify register width
code = opRe.sub("{INTREG_RAX}", code)
else:
print "Didn't know how to encode fixed register %s!" % reg
elif tagType == None or tagSize == None:
raise Exception, "Problem parsing operand tag: %s" % tag
elif tagType == "C" or tagType == "D" or tagType == "G" or \
tagType == "P" or tagType == "S" or \
tagType == "T" or tagType == "V":
# Use the "reg" field of the ModRM byte to select the register
code = opRe.sub("{(uint8_t)MODRM_REG}", code)
elif tagType == "E" or tagType == "Q" or tagType == "W":
# This might refer to memory or to a register. We need to
# divide it up farther.
regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
regTags = copy.copy(opTags)
regTags.pop(-1)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
memCode = opRe.sub("0", code)
memTags = copy.copy(opTags)
memTags.pop(-1)
return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
{"3" : (regCode, regTags, postfix)},
(memCode, memTags, postfix))
elif tagType == "I" or tagType == "J":
# Substitute in an immediate
code = opRe.sub("{IMMEDIATE}", code)
elif tagType == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
code = opRe.sub("0", code)
elif tagType == "PR" or tagType == "R" or tagType == "VR":
# There should probably be a check here to verify that mod
# is equal to 11b
code = opRe.sub("{(uint8_t)MODRM_RM}", code)
else:
raise Exception, "Unrecognized tag %s." % tag
opTags.pop(-1)
# At this point, we've built up "code" to have all the necessary extra
# instructions needed to implement whatever types of operands were
# specified. Now we'll assemble it it into a microOp sequence.
ops = assembleMicro(code)
# Build a macroop to contain the sequence of microops we've
# constructed. The decode block will be used to fill in our
# inner decode structure, and the rest will be concatenated and
# passed back.
return genInst(name, Name + postfix, ops)
}};
def format TaggedOp(code, tagSet) {{
def format Inst(*opTypeSet) {{
(header_output,
decoder_output,
decode_block,
exec_output) = doCompOps(name, Name, code, tagSet, '')
exec_output) = doInst(name, Name, list(opTypeSet))
}};
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
def format MultiInst(switchVal, *opTypeSets) {{
switcher = {}
for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
switcher[count] = (code, tagSet, '')
for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
switcher[count] = (opTypeSet,)
(header_output,
decoder_output,
decode_block,
exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher)
}};

View file

@ -84,6 +84,9 @@ namespace X86ISA;
//Include the base class for x86 instructions, and some support code
##include "base.isa"
//Include the instruction definitions
##include "insts/insts.isa"
//Include the definitions for the instruction formats
##include "formats/formats.isa"

View file

@ -57,11 +57,153 @@
////////////////////////////////////////////////////////////////////
//
// Code to "assemble" microcode sequences
// Code to "specialize" a microcode sequence to use a particular
// variety of operands
//
let {{
class MicroOpStatement:
# This builds either a regular or macro op to implement the sequence of
# ops we give it.
def genInst(name, Name, ops):
# If we can implement this instruction with exactly one microop, just
# use that directly.
newStmnt = ''
if len(ops) == 1:
decode_block = "return (X86StaticInst *)(%s);" % \
ops[0].getAllocator()
return ('', '', decode_block, '')
else:
# Build a macroop to contain the sequence of microops we've
# been given.
return genMacroOp(name, Name, ops)
}};
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
header_output = ''
decoder_output = ''
decode_block = 'switch(%s) {\n' % switchVal
exec_output = ''
for (val, todo) in vals.items():
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *todo)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
exec_output += new_exec_output
if default:
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *default)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tdefault: %s\n' % new_decode_block
exec_output += new_exec_output
decode_block += '}\n'
return (header_output, decoder_output, decode_block, exec_output)
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
raise Exception, "Problem parsing operand type %s" % opTypeString
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
}};
let {{
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes". These are "implemented"
# in reverse order.
def specializeInst(name, Name, code, opTypes):
opNum = len(opTypes) - 1
while len(opTypes):
# print "Building a composite op with tags", opTypes
# print "And code", code
opNum = len(opTypes) - 1
# A regular expression to find the operand placeholders we're
# interested in.
opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
# Parse the operand type strign we're working with
opType = OpType(opTypes[opNum])
if opType.reg:
#Figure out what to do with fixed register operands
if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
elif opType.reg == "Al":
# We need a way to specify register width
code = opRe.sub("%{INTREG_RAX}", code)
else:
print "Didn't know how to encode fixed register %s!" % opType.reg
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
regTypes = copy.copy(opTypes)
regTypes.pop(-1)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
memCode = opRe.sub("%0", code)
memTypes = copy.copy(opTypes)
memTypes.pop(-1)
return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
{"3" : (regCode, regTypes)}, (memCode, memTypes))
elif opType.tag in ("I", "J"):
# Immediates are already in the instruction, so don't leave in
# those parameters
code = opRe.sub("${IMMEDIATE}", code)
elif opType.tag == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
code = opRe.sub("%0", code)
elif opType.tag in ("PR", "R", "VR"):
# There should probably be a check here to verify that mod
# is equal to 11b
code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
else:
raise Exception, "Unrecognized tag %s." % opType.tag
opTypes.pop(-1)
# At this point, we've built up "code" to have all the necessary extra
# instructions needed to implement whatever types of operands were
# specified. Now we'll assemble it it into a microOp sequence.
ops = assembleMicro(code)
# Build a macroop to contain the sequence of microops we've
# constructed. The decode block will be used to fill in our
# inner decode structure, and the rest will be concatenated and
# passed back.
return genInst(name, Name, ops)
}};
////////////////////////////////////////////////////////////////////
//
// The microcode assembler
//
let {{
class MicroOpStatement(object):
def __init__(self):
self.className = ''
self.label = ''
@ -80,16 +222,24 @@ let {{
def getAllocator(self, *microFlags):
args = ''
signature = "<"
emptySig = True
for arg in self.args:
if arg.has_key("operandConst"):
args += ", %s" % arg["operandConst"]
elif arg.has_key("operandCode"):
args += ", %s" % arg["operandCode"]
if not emptySig:
signature += ", "
emptySig = False
if arg.has_key("operandImm"):
args += ", %s" % arg["operandImm"]
signature += ImmOpType
elif arg.has_key("operandReg"):
args += ", %s" % arg["operandReg"]
signature += RegOpType
elif arg.has_key("operandLabel"):
raise Exception, "Found a label while creating allocator string."
else:
raise Exception, "Unrecognized operand type."
return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
signature += ">"
return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
}};
let {{
@ -101,7 +251,9 @@ let {{
labels[op.label] = count
micropc += 1
return labels
}};
let{{
def assembleMicro(code):
# This function takes in a block of microcode assembly and returns
# a python list of objects which describe it.
@ -115,7 +267,7 @@ let {{
# time. Each expression expects the thing it's looking for to be at
# the beginning of the line, so the previous component is stripped
# before continuing.
labelRe = re.compile(r'^[ \t]*(?P<label>[a-zA-Z_]\w*)[ \t]:')
labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
# This recognizes three different flavors of operands:
@ -126,7 +278,12 @@ let {{
# underscore, which is optionally followed by a sequence of
# capital or small letters, underscores, or digts between 0 and 9
opRe = re.compile( \
r'^[ \t]*((?P<operandLabel>[a-zA-Z_]\w*)|(?P<operandConst>[0-9][0-9]*)|(\{(?P<operandCode>[^}]*)\}))')
r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
r'(\%(?P<operandReg0>\w\w*))|' +
r'(\%\{(?P<operandReg1>[^}]*)\})|' +
r'(\$(?P<operandImm0>\w\w*))|' +
r'(\$\{(?P<operandImm1>[^}]*)\}))')
lineMatch = lineRe.search(code)
while lineMatch != None:
statement = MicroOpStatement()
@ -165,9 +322,10 @@ let {{
# representations of operand values. Different forms might be
# needed in different places, for instance to replace a label
# with an offset.
for opType in ("operandLabel", "operandConst", "operandCode"):
for opType in ("operandLabel0", "operandReg0", "operandImm0",
"operandLabel1", "operandReg1", "operandImm1"):
if opMatch.group(opType):
statement.args[-1][opType] = opMatch.group(opType)
statement.args[-1][opType[:-1]] = opMatch.group(opType)
if len(statement.args[-1]) == 0:
print "Problem parsing operand in statement: %s" \
% orig_line
@ -193,7 +351,7 @@ let {{
# This is assuming that intra microcode branches go to
# the next micropc + displacement, or
# micropc + 1 + displacement.
arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
micropc += 1
return statements
}};

View file

@ -0,0 +1,172 @@
// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use. Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
// Director of Intellectual Property Licensing
// Office of Strategy and Technology
// Hewlett-Packard Company
// 1501 Page Mill Road
// Palo Alto, California 94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. No right of
// sublicense is granted herewith. Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses. Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
//The operand types a microop template can be specialized with
output header {{
enum OperandType {
RegisterOperand,
ImmediateOperand
};
}};
//A class which is the base of all x86 micro ops it provides a function to
//set necessary flags appropriately.
output header {{
class X86MicroOpBase : public X86StaticInst
{
protected:
X86MicroOpBase(bool isMicro, bool isDelayed,
bool isFirst, bool isLast,
const char *mnem, ExtMachInst _machInst,
OpClass __opClass) :
X86StaticInst(mnem, _machInst, __opClass)
{
flags[IsMicroOp] = isMicro;
flags[IsDelayedCommit] = isDelayed;
flags[IsFirstMicroOp] = isFirst;
flags[IsLastMicroOp] = isLast;
}
};
}};
// This sets up a class which is templated on the type of
// arguments a particular flavor of a microcode instruction
// can accept. It's parameters are specialized to create polymorphic
// behavior in microops.
def template BaseMicroOpTemplateDeclare {{
template%(signature)s
class %(class_name)s;
}};
let {{
def buildBaseMicroOpTemplate(Name, numParams):
signature = "<"
signature += "int SignatureOperandTypeSpecifier0"
for count in xrange(1,numParams):
signature += \
", int SingatureOperandTypeSpecifier%d" % count
signature += ">"
subs = {"signature" : signature, "class_name" : Name}
return BaseMicroOpTemplateDeclare.subst(subs)
RegOpType = "RegisterOperand"
ImmOpType = "ImmediateOperand"
def buildMicroOpTemplateDict(*params):
signature = "<"
if len(params):
signature += params[0]
if len(params) > 1:
for param in params[1:]:
signature += ", %s" % param
signature += ">"
subs = {"param_dec" : "", "param_arg_dec" : "",
"param_init" : "", "signature" : signature}
for count in xrange(len(params)):
subs["param_dec"] += "uint64_t param%d;\n" % count
subs["param_arg_dec"] += ", uint64_t _param%d" % count
subs["param_init"] += ", param%d(_param%d)" % (count, count)
return subs
}};
// A tmeplate for building a specialized version of the microcode
// instruction which knows specifies which arguments it wants
def template MicroOpDeclare {{
template<>
class %(class_name)s%(signature)s : public X86MicroOpBase
{
protected:
%(param_dec)s
void buildMe();
public:
%(class_name)s(bool isMicro, bool isDelayed,
bool isFirst, bool isLast,
ExtMachInst _machInst %(param_arg_dec)s);
%(class_name)s(ExtMachInst _machInst %(param_arg_dec)s);
%(BasicExecDeclare)s
};
}};
def template MicroOpConstructor {{
inline void %(class_name)s%(signature)s::buildMe()
{
%(constructor)s;
}
inline %(class_name)s%(signature)s::%(class_name)s(
ExtMachInst machInst %(param_arg_dec)s) :
%(base_class)s(false, false, false, false,
"%(mnemonic)s", machInst, %(op_class)s)
%(param_init)s
{
buildMe();
}
inline %(class_name)s%(signature)s::%(class_name)s(
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
ExtMachInst machInst %(param_arg_dec)s)
: %(base_class)s(isMicro, isDelayed, isFirst, isLast,
"%(mnemonic)s", machInst, %(op_class)s)
%(param_init)s
{
buildMe();
}
}};

View file

@ -53,5 +53,8 @@
//
// Authors: Gabe Black
//Micro ops
//Common microop stuff
##include "base.isa"
//Integer microop definitions
##include "int.isa"

View file

@ -96,7 +96,7 @@ def operand_types {{
}};
def operands {{
'IntRegOp0': ('IntReg', 'udw', 'regIndex0', 'IsInteger', 1),
'IntRegOp1': ('IntReg', 'udw', 'regIndex1', 'IsInteger', 2),
'IntRegOp2': ('IntReg', 'udw', 'regIndex2', 'IsInteger', 2),
'IntRegOp0': ('IntReg', 'udw', 'param0', 'IsInteger', 1),
'IntRegOp1': ('IntReg', 'udw', 'param1', 'IsInteger', 2),
'IntRegOp2': ('IntReg', 'udw', 'param2', 'IsInteger', 2),
}};

View file

@ -161,7 +161,26 @@ namespace X86ISA
inline static bool
operator == (const ExtMachInst &emi1, const ExtMachInst &emi2)
{
//Since this is empty, it's always equal
if(emi1.legacy != emi2.legacy)
return false;
if(emi1.rex != emi2.rex)
return false;
if(emi1.opcode.num != emi2.opcode.num)
return false;
if(emi1.opcode.op != emi2.opcode.op)
return false;
if(emi1.opcode.prefixA != emi2.opcode.prefixA)
return false;
if(emi1.opcode.prefixB != emi2.opcode.prefixB)
return false;
if(emi1.modRM != emi2.modRM)
return false;
if(emi1.sib != emi2.sib)
return false;
if(emi1.immediate != emi2.immediate)
return false;
if(emi1.displacement != emi2.displacement)
return false;
return true;
}

View file

@ -70,8 +70,15 @@ namespace __hash_namespace {
template<>
struct hash<X86ISA::ExtMachInst> {
size_t operator()(const X86ISA::ExtMachInst &emi) const {
//Because these are all the same, return 0
return 0;
return (((uint64_t)emi.legacy << 56) |
((uint64_t)emi.rex << 48) |
((uint64_t)emi.modRM << 40) |
((uint64_t)emi.sib << 32) |
((uint64_t)emi.opcode.num << 24) |
((uint64_t)emi.opcode.prefixA << 16) |
((uint64_t)emi.opcode.prefixB << 8) |
((uint64_t)emi.opcode.op)) ^
emi.immediate ^ emi.displacement;
};
};
}