Merge zizzer.eecs.umich.edu:/bk/newmem
into ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem-o3-spec --HG-- extra : convert_revision : b7e89d32df946ea24c438292308f5fc8248f8bd9
This commit is contained in:
commit
3c9768e644
11 changed files with 482 additions and 179 deletions
|
@ -866,7 +866,11 @@ class Format:
|
|||
context = {}
|
||||
updateExportContext()
|
||||
context.update(exportContext)
|
||||
context.update({ 'name': name, 'Name': string.capitalize(name) })
|
||||
if len(name):
|
||||
Name = name[0].upper()
|
||||
if len(name) > 1:
|
||||
Name += name[1:]
|
||||
context.update({ 'name': name, 'Name': Name })
|
||||
try:
|
||||
vars = self.func(self.user_code, context, *args[0], **args[1])
|
||||
except Exception, exc:
|
||||
|
@ -1028,7 +1032,7 @@ def substBitOps(code):
|
|||
# Template objects are format strings that allow substitution from
|
||||
# the attribute spaces of other objects (e.g. InstObjParams instances).
|
||||
|
||||
labelRE = re.compile(r'[^%]%\(([^\)]+)\)[sd]')
|
||||
labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
|
||||
|
||||
class Template:
|
||||
def __init__(self, t):
|
||||
|
|
|
@ -63,21 +63,89 @@ namespace X86ISA
|
|||
enum IntRegIndex
|
||||
{
|
||||
INTREG_RAX,
|
||||
INTREG_EAX = INTREG_RAX,
|
||||
INTREG_AX = INTREG_RAX,
|
||||
INTREG_AL = INTREG_RAX,
|
||||
INTREG_AH = INTREG_RAX,
|
||||
|
||||
INTREG_RCX,
|
||||
INTREG_ECX = INTREG_RCX,
|
||||
INTREG_CX = INTREG_RCX,
|
||||
INTREG_CL = INTREG_RCX,
|
||||
INTREG_CH = INTREG_RCX,
|
||||
|
||||
INTREG_RDX,
|
||||
INTREG_EDX = INTREG_RDX,
|
||||
INTREG_DX = INTREG_RDX,
|
||||
INTREG_DL = INTREG_RDX,
|
||||
INTREG_DH = INTREG_RDX,
|
||||
|
||||
INTREG_RBX,
|
||||
INTREG_EBX = INTREG_RBX,
|
||||
INTREG_BX = INTREG_RBX,
|
||||
INTREG_BL = INTREG_RBX,
|
||||
INTREG_BH = INTREG_RBX,
|
||||
|
||||
INTREG_RSP,
|
||||
INTREG_ESP = INTREG_RSP,
|
||||
INTREG_SP = INTREG_RSP,
|
||||
INTREG_SPL = INTREG_RSP,
|
||||
|
||||
INTREG_RBP,
|
||||
INTREG_EBP = INTREG_RBP,
|
||||
INTREG_BP = INTREG_RBP,
|
||||
INTREG_BPL = INTREG_RBP,
|
||||
|
||||
INTREG_RSI,
|
||||
INTREG_ESI = INTREG_RSI,
|
||||
INTREG_SI = INTREG_RSI,
|
||||
INTREG_SIL = INTREG_RSI,
|
||||
|
||||
INTREG_RDI,
|
||||
INTREG_R8W,
|
||||
INTREG_R9W,
|
||||
INTREG_R10W,
|
||||
INTREG_R11W,
|
||||
INTREG_R12W,
|
||||
INTREG_R13W,
|
||||
INTREG_R14W,
|
||||
INTREG_R15W,
|
||||
INTREG_EDI = INTREG_RDI,
|
||||
INTREG_DI = INTREG_RDI,
|
||||
INTREG_DIL = INTREG_RDI,
|
||||
|
||||
INTREG_R8,
|
||||
INTREG_R8D = INTREG_R8,
|
||||
INTREG_R8W = INTREG_R8,
|
||||
INTREG_R8B = INTREG_R8,
|
||||
|
||||
INTREG_R9,
|
||||
INTREG_R9D = INTREG_R9,
|
||||
INTREG_R9W = INTREG_R9,
|
||||
INTREG_R9B = INTREG_R9,
|
||||
|
||||
INTREG_R10,
|
||||
INTREG_R10D = INTREG_R10,
|
||||
INTREG_R10W = INTREG_R10,
|
||||
INTREG_R10B = INTREG_R10,
|
||||
|
||||
INTREG_R11,
|
||||
INTREG_R11D = INTREG_R11,
|
||||
INTREG_R11W = INTREG_R11,
|
||||
INTREG_R11B = INTREG_R11,
|
||||
|
||||
INTREG_R12,
|
||||
INTREG_R12D = INTREG_R12,
|
||||
INTREG_R12W = INTREG_R12,
|
||||
INTREG_R12B = INTREG_R12,
|
||||
|
||||
INTREG_R13,
|
||||
INTREG_R13D = INTREG_R13,
|
||||
INTREG_R13W = INTREG_R13,
|
||||
INTREG_R13B = INTREG_R13,
|
||||
|
||||
INTREG_R14,
|
||||
INTREG_R14D = INTREG_R14,
|
||||
INTREG_R14W = INTREG_R14,
|
||||
INTREG_R14B = INTREG_R14,
|
||||
|
||||
INTREG_R15,
|
||||
INTREG_R15D = INTREG_R15,
|
||||
INTREG_R15W = INTREG_R15,
|
||||
INTREG_R15B = INTREG_R15,
|
||||
|
||||
NUM_INTREGS
|
||||
};
|
||||
};
|
||||
|
|
|
@ -61,15 +61,12 @@
|
|||
0x1: decode OPCODE_OP_TOP5 {
|
||||
format WarnUnimpl {
|
||||
0x00: decode OPCODE_OP_BOTTOM3 {
|
||||
0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
|
||||
0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
|
||||
0x4: Inst::add(rAl,Ib);
|
||||
0x5: Inst::add(rAx,Iz);
|
||||
0x6: push_ES();
|
||||
0x7: pop_ES();
|
||||
default: MultiOp::add(
|
||||
{{Add %0 %0 %1}},
|
||||
OPCODE_OP_BOTTOM3,
|
||||
[[Eb,Gb],[Ev,Gv],
|
||||
[Gb,Eb],[Gv,Ev]]);
|
||||
default: MultiInst::add(OPCODE_OP_BOTTOM3,
|
||||
[Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
|
||||
}
|
||||
0x01: decode OPCODE_OP_BOTTOM3 {
|
||||
0x0: or_Eb_Gb();
|
||||
|
@ -126,16 +123,13 @@
|
|||
0x7: das();
|
||||
}
|
||||
0x06: decode OPCODE_OP_BOTTOM3 {
|
||||
0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
|
||||
0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
|
||||
0x4: Inst::xor(rAl,Ib);
|
||||
0x5: Inst::xor(rAx,Iz);
|
||||
0x6: M5InternalError::error(
|
||||
{{"Tried to execute the SS segment override prefix!"}});
|
||||
0x7: aaa();
|
||||
default: MultiOp::xor(
|
||||
{{Xor %0 %0 %1}},
|
||||
OPCODE_OP_BOTTOM3,
|
||||
[[Eb,Gb],[Ev,Gv],
|
||||
[Gb,Eb],[Gv,Ev]]);
|
||||
default: MultiInst::xor(OPCODE_OP_BOTTOM3,
|
||||
[Eb,Gb],[Ev,Gv],[Gb,Eb],[Gv,Ev]);
|
||||
}
|
||||
0x07: decode OPCODE_OP_BOTTOM3 {
|
||||
0x0: cmp_Eb_Gb();
|
||||
|
|
|
@ -61,151 +61,26 @@
|
|||
//
|
||||
|
||||
let {{
|
||||
# This builds either a regular or macro op to implement the sequence of
|
||||
# ops we give it.
|
||||
def genInst(name, Name, ops):
|
||||
# If we can implement this instruction with exactly one microop, just
|
||||
# use that directly.
|
||||
newStmnt = ''
|
||||
if len(ops) == 1:
|
||||
decode_block = "return (X86StaticInst *)(%s);" % \
|
||||
ops[0].getAllocator()
|
||||
return ('', '', decode_block, '')
|
||||
else:
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# been given.
|
||||
return genMacroOp(name, Name, ops)
|
||||
def doInst(name, Name, opTypeSet):
|
||||
if not instDict.has_key(Name):
|
||||
raise Exception, "Unrecognized instruction: %s" % Name
|
||||
inst = instDict[Name]()
|
||||
return inst.emit(opTypeSet)
|
||||
}};
|
||||
|
||||
let {{
|
||||
# This code builds up a decode block which decodes based on switchval.
|
||||
# vals is a dict which matches case values with what should be decoded to.
|
||||
# builder is called on the exploded contents of "vals" values to generate
|
||||
# whatever code should be used.
|
||||
def doMultiOp(name, Name, builder, switchVal, vals, default = None):
|
||||
header_output = ''
|
||||
decoder_output = ''
|
||||
decode_block = 'switch(%s) {\n' % switchVal
|
||||
exec_output = ''
|
||||
for (val, todo) in vals.items():
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *todo)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
|
||||
exec_output += new_exec_output
|
||||
if default:
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *default)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tdefault: %s\n' % new_decode_block
|
||||
exec_output += new_exec_output
|
||||
decode_block += '}\n'
|
||||
return (header_output, decoder_output, decode_block, exec_output)
|
||||
}};
|
||||
|
||||
let {{
|
||||
|
||||
# This function specializes the given piece of code to use a particular
|
||||
# set of argument types described by "opTags". These are "implemented"
|
||||
# in reverse order.
|
||||
def doCompOps(name, Name, code, opTags, postfix):
|
||||
opNum = len(opTags) - 1
|
||||
while len(opTags):
|
||||
# print "Building a composite op with tags", opTags
|
||||
# print "And code", code
|
||||
opNum = len(opTags) - 1
|
||||
# A regular expression to find the operand placeholders we're
|
||||
# interested in.
|
||||
opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
|
||||
tag = opTags[opNum]
|
||||
# Build up a name for this instructions class using the argument
|
||||
# types. Each variation will get its own name this way.
|
||||
postfix = '_' + tag + postfix
|
||||
tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
|
||||
tagMatch = tagParser.search(tag)
|
||||
if tagMatch == None:
|
||||
raise Exception, "Problem parsing operand tag %s" % tag
|
||||
reg = tagMatch.group("tagReg")
|
||||
tagType = tagMatch.group("tagType")
|
||||
tagSize = tagMatch.group("tagSize")
|
||||
if reg:
|
||||
#Figure out what to do with fixed register operands
|
||||
if reg in ("Ax", "Bx", "Cx", "Dx"):
|
||||
code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
|
||||
elif reg == "Al":
|
||||
# We need a way to specify register width
|
||||
code = opRe.sub("{INTREG_RAX}", code)
|
||||
else:
|
||||
print "Didn't know how to encode fixed register %s!" % reg
|
||||
elif tagType == None or tagSize == None:
|
||||
raise Exception, "Problem parsing operand tag: %s" % tag
|
||||
elif tagType == "C" or tagType == "D" or tagType == "G" or \
|
||||
tagType == "P" or tagType == "S" or \
|
||||
tagType == "T" or tagType == "V":
|
||||
# Use the "reg" field of the ModRM byte to select the register
|
||||
code = opRe.sub("{(uint8_t)MODRM_REG}", code)
|
||||
elif tagType == "E" or tagType == "Q" or tagType == "W":
|
||||
# This might refer to memory or to a register. We need to
|
||||
# divide it up farther.
|
||||
regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||
regTags = copy.copy(opTags)
|
||||
regTags.pop(-1)
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
memCode = opRe.sub("0", code)
|
||||
memTags = copy.copy(opTags)
|
||||
memTags.pop(-1)
|
||||
return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
|
||||
{"3" : (regCode, regTags, postfix)},
|
||||
(memCode, memTags, postfix))
|
||||
elif tagType == "I" or tagType == "J":
|
||||
# Substitute in an immediate
|
||||
code = opRe.sub("{IMMEDIATE}", code)
|
||||
elif tagType == "M":
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
code = opRe.sub("0", code)
|
||||
elif tagType == "PR" or tagType == "R" or tagType == "VR":
|
||||
# There should probably be a check here to verify that mod
|
||||
# is equal to 11b
|
||||
code = opRe.sub("{(uint8_t)MODRM_RM}", code)
|
||||
else:
|
||||
raise Exception, "Unrecognized tag %s." % tag
|
||||
opTags.pop(-1)
|
||||
|
||||
# At this point, we've built up "code" to have all the necessary extra
|
||||
# instructions needed to implement whatever types of operands were
|
||||
# specified. Now we'll assemble it it into a microOp sequence.
|
||||
ops = assembleMicro(code)
|
||||
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# constructed. The decode block will be used to fill in our
|
||||
# inner decode structure, and the rest will be concatenated and
|
||||
# passed back.
|
||||
return genInst(name, Name + postfix, ops)
|
||||
}};
|
||||
|
||||
def format TaggedOp(code, tagSet) {{
|
||||
def format Inst(*opTypeSet) {{
|
||||
(header_output,
|
||||
decoder_output,
|
||||
decode_block,
|
||||
exec_output) = doCompOps(name, Name, code, tagSet, '')
|
||||
exec_output) = doInst(name, Name, list(opTypeSet))
|
||||
}};
|
||||
|
||||
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
|
||||
def format MultiInst(switchVal, *opTypeSets) {{
|
||||
switcher = {}
|
||||
for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
|
||||
switcher[count] = (code, tagSet, '')
|
||||
for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
|
||||
switcher[count] = (opTypeSet,)
|
||||
(header_output,
|
||||
decoder_output,
|
||||
decode_block,
|
||||
exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
|
||||
exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher)
|
||||
}};
|
||||
|
|
|
@ -84,6 +84,9 @@ namespace X86ISA;
|
|||
//Include the base class for x86 instructions, and some support code
|
||||
##include "base.isa"
|
||||
|
||||
//Include the instruction definitions
|
||||
##include "insts/insts.isa"
|
||||
|
||||
//Include the definitions for the instruction formats
|
||||
##include "formats/formats.isa"
|
||||
|
||||
|
|
|
@ -57,11 +57,153 @@
|
|||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Code to "assemble" microcode sequences
|
||||
// Code to "specialize" a microcode sequence to use a particular
|
||||
// variety of operands
|
||||
//
|
||||
|
||||
let {{
|
||||
class MicroOpStatement:
|
||||
# This builds either a regular or macro op to implement the sequence of
|
||||
# ops we give it.
|
||||
def genInst(name, Name, ops):
|
||||
# If we can implement this instruction with exactly one microop, just
|
||||
# use that directly.
|
||||
newStmnt = ''
|
||||
if len(ops) == 1:
|
||||
decode_block = "return (X86StaticInst *)(%s);" % \
|
||||
ops[0].getAllocator()
|
||||
return ('', '', decode_block, '')
|
||||
else:
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# been given.
|
||||
return genMacroOp(name, Name, ops)
|
||||
}};
|
||||
|
||||
let {{
|
||||
# This code builds up a decode block which decodes based on switchval.
|
||||
# vals is a dict which matches case values with what should be decoded to.
|
||||
# builder is called on the exploded contents of "vals" values to generate
|
||||
# whatever code should be used.
|
||||
def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
|
||||
header_output = ''
|
||||
decoder_output = ''
|
||||
decode_block = 'switch(%s) {\n' % switchVal
|
||||
exec_output = ''
|
||||
for (val, todo) in vals.items():
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *todo)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
|
||||
exec_output += new_exec_output
|
||||
if default:
|
||||
(new_header_output,
|
||||
new_decoder_output,
|
||||
new_decode_block,
|
||||
new_exec_output) = builder(name, Name, *default)
|
||||
header_output += new_header_output
|
||||
decoder_output += new_decoder_output
|
||||
decode_block += '\tdefault: %s\n' % new_decode_block
|
||||
exec_output += new_exec_output
|
||||
decode_block += '}\n'
|
||||
return (header_output, decoder_output, decode_block, exec_output)
|
||||
}};
|
||||
|
||||
let {{
|
||||
class OpType(object):
|
||||
parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
|
||||
def __init__(self, opTypeString):
|
||||
match = OpType.parser.search(opTypeString)
|
||||
if match == None:
|
||||
raise Exception, "Problem parsing operand type %s" % opTypeString
|
||||
self.reg = match.group("reg")
|
||||
self.tag = match.group("tag")
|
||||
self.size = match.group("size")
|
||||
}};
|
||||
|
||||
let {{
|
||||
|
||||
# This function specializes the given piece of code to use a particular
|
||||
# set of argument types described by "opTypes". These are "implemented"
|
||||
# in reverse order.
|
||||
def specializeInst(name, Name, code, opTypes):
|
||||
opNum = len(opTypes) - 1
|
||||
while len(opTypes):
|
||||
# print "Building a composite op with tags", opTypes
|
||||
# print "And code", code
|
||||
opNum = len(opTypes) - 1
|
||||
# A regular expression to find the operand placeholders we're
|
||||
# interested in.
|
||||
opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
|
||||
|
||||
# Parse the operand type strign we're working with
|
||||
opType = OpType(opTypes[opNum])
|
||||
|
||||
if opType.reg:
|
||||
#Figure out what to do with fixed register operands
|
||||
if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
|
||||
code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
|
||||
elif opType.reg == "Al":
|
||||
# We need a way to specify register width
|
||||
code = opRe.sub("%{INTREG_RAX}", code)
|
||||
else:
|
||||
print "Didn't know how to encode fixed register %s!" % opType.reg
|
||||
elif opType.tag == None or opType.size == None:
|
||||
raise Exception, "Problem parsing operand tag: %s" % opType.tag
|
||||
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
|
||||
# Use the "reg" field of the ModRM byte to select the register
|
||||
code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
|
||||
elif opType.tag in ("E", "Q", "W"):
|
||||
# This might refer to memory or to a register. We need to
|
||||
# divide it up farther.
|
||||
regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
|
||||
regTypes = copy.copy(opTypes)
|
||||
regTypes.pop(-1)
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
memCode = opRe.sub("%0", code)
|
||||
memTypes = copy.copy(opTypes)
|
||||
memTypes.pop(-1)
|
||||
return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
|
||||
{"3" : (regCode, regTypes)}, (memCode, memTypes))
|
||||
elif opType.tag in ("I", "J"):
|
||||
# Immediates are already in the instruction, so don't leave in
|
||||
# those parameters
|
||||
code = opRe.sub("${IMMEDIATE}", code)
|
||||
elif opType.tag == "M":
|
||||
# This needs to refer to memory, but we'll fill in the details
|
||||
# later. It needs to take into account unaligned memory
|
||||
# addresses.
|
||||
code = opRe.sub("%0", code)
|
||||
elif opType.tag in ("PR", "R", "VR"):
|
||||
# There should probably be a check here to verify that mod
|
||||
# is equal to 11b
|
||||
code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
|
||||
else:
|
||||
raise Exception, "Unrecognized tag %s." % opType.tag
|
||||
opTypes.pop(-1)
|
||||
|
||||
# At this point, we've built up "code" to have all the necessary extra
|
||||
# instructions needed to implement whatever types of operands were
|
||||
# specified. Now we'll assemble it it into a microOp sequence.
|
||||
ops = assembleMicro(code)
|
||||
|
||||
# Build a macroop to contain the sequence of microops we've
|
||||
# constructed. The decode block will be used to fill in our
|
||||
# inner decode structure, and the rest will be concatenated and
|
||||
# passed back.
|
||||
return genInst(name, Name, ops)
|
||||
}};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// The microcode assembler
|
||||
//
|
||||
|
||||
let {{
|
||||
class MicroOpStatement(object):
|
||||
def __init__(self):
|
||||
self.className = ''
|
||||
self.label = ''
|
||||
|
@ -80,16 +222,24 @@ let {{
|
|||
|
||||
def getAllocator(self, *microFlags):
|
||||
args = ''
|
||||
signature = "<"
|
||||
emptySig = True
|
||||
for arg in self.args:
|
||||
if arg.has_key("operandConst"):
|
||||
args += ", %s" % arg["operandConst"]
|
||||
elif arg.has_key("operandCode"):
|
||||
args += ", %s" % arg["operandCode"]
|
||||
if not emptySig:
|
||||
signature += ", "
|
||||
emptySig = False
|
||||
if arg.has_key("operandImm"):
|
||||
args += ", %s" % arg["operandImm"]
|
||||
signature += ImmOpType
|
||||
elif arg.has_key("operandReg"):
|
||||
args += ", %s" % arg["operandReg"]
|
||||
signature += RegOpType
|
||||
elif arg.has_key("operandLabel"):
|
||||
raise Exception, "Found a label while creating allocator string."
|
||||
else:
|
||||
raise Exception, "Unrecognized operand type."
|
||||
return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
|
||||
signature += ">"
|
||||
return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
|
||||
}};
|
||||
|
||||
let {{
|
||||
|
@ -101,7 +251,9 @@ let {{
|
|||
labels[op.label] = count
|
||||
micropc += 1
|
||||
return labels
|
||||
}};
|
||||
|
||||
let{{
|
||||
def assembleMicro(code):
|
||||
# This function takes in a block of microcode assembly and returns
|
||||
# a python list of objects which describe it.
|
||||
|
@ -115,7 +267,7 @@ let {{
|
|||
# time. Each expression expects the thing it's looking for to be at
|
||||
# the beginning of the line, so the previous component is stripped
|
||||
# before continuing.
|
||||
labelRe = re.compile(r'^[ \t]*(?P<label>[a-zA-Z_]\w*)[ \t]:')
|
||||
labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
|
||||
lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
|
||||
classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
|
||||
# This recognizes three different flavors of operands:
|
||||
|
@ -126,7 +278,12 @@ let {{
|
|||
# underscore, which is optionally followed by a sequence of
|
||||
# capital or small letters, underscores, or digts between 0 and 9
|
||||
opRe = re.compile( \
|
||||
r'^[ \t]*((?P<operandLabel>[a-zA-Z_]\w*)|(?P<operandConst>[0-9][0-9]*)|(\{(?P<operandCode>[^}]*)\}))')
|
||||
r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
|
||||
r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
|
||||
r'(\%(?P<operandReg0>\w\w*))|' +
|
||||
r'(\%\{(?P<operandReg1>[^}]*)\})|' +
|
||||
r'(\$(?P<operandImm0>\w\w*))|' +
|
||||
r'(\$\{(?P<operandImm1>[^}]*)\}))')
|
||||
lineMatch = lineRe.search(code)
|
||||
while lineMatch != None:
|
||||
statement = MicroOpStatement()
|
||||
|
@ -165,9 +322,10 @@ let {{
|
|||
# representations of operand values. Different forms might be
|
||||
# needed in different places, for instance to replace a label
|
||||
# with an offset.
|
||||
for opType in ("operandLabel", "operandConst", "operandCode"):
|
||||
for opType in ("operandLabel0", "operandReg0", "operandImm0",
|
||||
"operandLabel1", "operandReg1", "operandImm1"):
|
||||
if opMatch.group(opType):
|
||||
statement.args[-1][opType] = opMatch.group(opType)
|
||||
statement.args[-1][opType[:-1]] = opMatch.group(opType)
|
||||
if len(statement.args[-1]) == 0:
|
||||
print "Problem parsing operand in statement: %s" \
|
||||
% orig_line
|
||||
|
@ -193,7 +351,7 @@ let {{
|
|||
# This is assuming that intra microcode branches go to
|
||||
# the next micropc + displacement, or
|
||||
# micropc + 1 + displacement.
|
||||
arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
|
||||
arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
|
||||
micropc += 1
|
||||
return statements
|
||||
}};
|
||||
|
|
172
src/arch/x86/isa/microops/base.isa
Normal file
172
src/arch/x86/isa/microops/base.isa
Normal file
|
@ -0,0 +1,172 @@
|
|||
// -*- mode:c++ -*-
|
||||
|
||||
// Copyright (c) 2007 The Hewlett-Packard Development Company
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use of this software in source and binary forms,
|
||||
// with or without modification, are permitted provided that the
|
||||
// following conditions are met:
|
||||
//
|
||||
// The software must be used only for Non-Commercial Use which means any
|
||||
// use which is NOT directed to receiving any direct monetary
|
||||
// compensation for, or commercial advantage from such use. Illustrative
|
||||
// examples of non-commercial use are academic research, personal study,
|
||||
// teaching, education and corporate research & development.
|
||||
// Illustrative examples of commercial use are distributing products for
|
||||
// commercial advantage and providing services using the software for
|
||||
// commercial advantage.
|
||||
//
|
||||
// If you wish to use this software or functionality therein that may be
|
||||
// covered by patents for commercial use, please contact:
|
||||
// Director of Intellectual Property Licensing
|
||||
// Office of Strategy and Technology
|
||||
// Hewlett-Packard Company
|
||||
// 1501 Page Mill Road
|
||||
// Palo Alto, California 94304
|
||||
//
|
||||
// Redistributions of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer. Redistributions
|
||||
// in binary form must reproduce the above copyright notice, this list of
|
||||
// conditions and the following disclaimer in the documentation and/or
|
||||
// other materials provided with the distribution. Neither the name of
|
||||
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission. No right of
|
||||
// sublicense is granted herewith. Derivatives of the software and
|
||||
// output created using the software may be prepared, but only for
|
||||
// Non-Commercial Uses. Derivatives of the software may be shared with
|
||||
// others provided: (i) the others agree to abide by the list of
|
||||
// conditions herein which includes the Non-Commercial Use restrictions;
|
||||
// and (ii) such Derivatives of the software include the above copyright
|
||||
// notice to acknowledge the contribution from this software where
|
||||
// applicable, this list of conditions and the disclaimer below.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
// Authors: Gabe Black
|
||||
|
||||
//The operand types a microop template can be specialized with
|
||||
output header {{
|
||||
enum OperandType {
|
||||
RegisterOperand,
|
||||
ImmediateOperand
|
||||
};
|
||||
}};
|
||||
|
||||
//A class which is the base of all x86 micro ops it provides a function to
|
||||
//set necessary flags appropriately.
|
||||
output header {{
|
||||
class X86MicroOpBase : public X86StaticInst
|
||||
{
|
||||
protected:
|
||||
X86MicroOpBase(bool isMicro, bool isDelayed,
|
||||
bool isFirst, bool isLast,
|
||||
const char *mnem, ExtMachInst _machInst,
|
||||
OpClass __opClass) :
|
||||
X86StaticInst(mnem, _machInst, __opClass)
|
||||
{
|
||||
flags[IsMicroOp] = isMicro;
|
||||
flags[IsDelayedCommit] = isDelayed;
|
||||
flags[IsFirstMicroOp] = isFirst;
|
||||
flags[IsLastMicroOp] = isLast;
|
||||
}
|
||||
};
|
||||
}};
|
||||
|
||||
// This sets up a class which is templated on the type of
|
||||
// arguments a particular flavor of a microcode instruction
|
||||
// can accept. It's parameters are specialized to create polymorphic
|
||||
// behavior in microops.
|
||||
def template BaseMicroOpTemplateDeclare {{
|
||||
template%(signature)s
|
||||
class %(class_name)s;
|
||||
}};
|
||||
|
||||
let {{
|
||||
def buildBaseMicroOpTemplate(Name, numParams):
|
||||
signature = "<"
|
||||
signature += "int SignatureOperandTypeSpecifier0"
|
||||
for count in xrange(1,numParams):
|
||||
signature += \
|
||||
", int SingatureOperandTypeSpecifier%d" % count
|
||||
signature += ">"
|
||||
subs = {"signature" : signature, "class_name" : Name}
|
||||
return BaseMicroOpTemplateDeclare.subst(subs)
|
||||
|
||||
RegOpType = "RegisterOperand"
|
||||
ImmOpType = "ImmediateOperand"
|
||||
|
||||
def buildMicroOpTemplateDict(*params):
|
||||
signature = "<"
|
||||
if len(params):
|
||||
signature += params[0]
|
||||
if len(params) > 1:
|
||||
for param in params[1:]:
|
||||
signature += ", %s" % param
|
||||
signature += ">"
|
||||
subs = {"param_dec" : "", "param_arg_dec" : "",
|
||||
"param_init" : "", "signature" : signature}
|
||||
for count in xrange(len(params)):
|
||||
subs["param_dec"] += "uint64_t param%d;\n" % count
|
||||
subs["param_arg_dec"] += ", uint64_t _param%d" % count
|
||||
subs["param_init"] += ", param%d(_param%d)" % (count, count)
|
||||
return subs
|
||||
}};
|
||||
|
||||
// A tmeplate for building a specialized version of the microcode
|
||||
// instruction which knows specifies which arguments it wants
|
||||
def template MicroOpDeclare {{
|
||||
template<>
|
||||
class %(class_name)s%(signature)s : public X86MicroOpBase
|
||||
{
|
||||
protected:
|
||||
%(param_dec)s
|
||||
void buildMe();
|
||||
|
||||
public:
|
||||
%(class_name)s(bool isMicro, bool isDelayed,
|
||||
bool isFirst, bool isLast,
|
||||
ExtMachInst _machInst %(param_arg_dec)s);
|
||||
|
||||
%(class_name)s(ExtMachInst _machInst %(param_arg_dec)s);
|
||||
|
||||
%(BasicExecDeclare)s
|
||||
};
|
||||
}};
|
||||
|
||||
def template MicroOpConstructor {{
|
||||
|
||||
inline void %(class_name)s%(signature)s::buildMe()
|
||||
{
|
||||
%(constructor)s;
|
||||
}
|
||||
|
||||
inline %(class_name)s%(signature)s::%(class_name)s(
|
||||
ExtMachInst machInst %(param_arg_dec)s) :
|
||||
%(base_class)s(false, false, false, false,
|
||||
"%(mnemonic)s", machInst, %(op_class)s)
|
||||
%(param_init)s
|
||||
{
|
||||
buildMe();
|
||||
}
|
||||
|
||||
inline %(class_name)s%(signature)s::%(class_name)s(
|
||||
bool isMicro, bool isDelayed, bool isFirst, bool isLast,
|
||||
ExtMachInst machInst %(param_arg_dec)s)
|
||||
: %(base_class)s(isMicro, isDelayed, isFirst, isLast,
|
||||
"%(mnemonic)s", machInst, %(op_class)s)
|
||||
%(param_init)s
|
||||
{
|
||||
buildMe();
|
||||
}
|
||||
}};
|
|
@ -53,5 +53,8 @@
|
|||
//
|
||||
// Authors: Gabe Black
|
||||
|
||||
//Micro ops
|
||||
//Common microop stuff
|
||||
##include "base.isa"
|
||||
|
||||
//Integer microop definitions
|
||||
##include "int.isa"
|
||||
|
|
|
@ -96,7 +96,7 @@ def operand_types {{
|
|||
}};
|
||||
|
||||
def operands {{
|
||||
'IntRegOp0': ('IntReg', 'udw', 'regIndex0', 'IsInteger', 1),
|
||||
'IntRegOp1': ('IntReg', 'udw', 'regIndex1', 'IsInteger', 2),
|
||||
'IntRegOp2': ('IntReg', 'udw', 'regIndex2', 'IsInteger', 2),
|
||||
'IntRegOp0': ('IntReg', 'udw', 'param0', 'IsInteger', 1),
|
||||
'IntRegOp1': ('IntReg', 'udw', 'param1', 'IsInteger', 2),
|
||||
'IntRegOp2': ('IntReg', 'udw', 'param2', 'IsInteger', 2),
|
||||
}};
|
||||
|
|
|
@ -161,7 +161,26 @@ namespace X86ISA
|
|||
inline static bool
|
||||
operator == (const ExtMachInst &emi1, const ExtMachInst &emi2)
|
||||
{
|
||||
//Since this is empty, it's always equal
|
||||
if(emi1.legacy != emi2.legacy)
|
||||
return false;
|
||||
if(emi1.rex != emi2.rex)
|
||||
return false;
|
||||
if(emi1.opcode.num != emi2.opcode.num)
|
||||
return false;
|
||||
if(emi1.opcode.op != emi2.opcode.op)
|
||||
return false;
|
||||
if(emi1.opcode.prefixA != emi2.opcode.prefixA)
|
||||
return false;
|
||||
if(emi1.opcode.prefixB != emi2.opcode.prefixB)
|
||||
return false;
|
||||
if(emi1.modRM != emi2.modRM)
|
||||
return false;
|
||||
if(emi1.sib != emi2.sib)
|
||||
return false;
|
||||
if(emi1.immediate != emi2.immediate)
|
||||
return false;
|
||||
if(emi1.displacement != emi2.displacement)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -70,8 +70,15 @@ namespace __hash_namespace {
|
|||
template<>
|
||||
struct hash<X86ISA::ExtMachInst> {
|
||||
size_t operator()(const X86ISA::ExtMachInst &emi) const {
|
||||
//Because these are all the same, return 0
|
||||
return 0;
|
||||
return (((uint64_t)emi.legacy << 56) |
|
||||
((uint64_t)emi.rex << 48) |
|
||||
((uint64_t)emi.modRM << 40) |
|
||||
((uint64_t)emi.sib << 32) |
|
||||
((uint64_t)emi.opcode.num << 24) |
|
||||
((uint64_t)emi.opcode.prefixA << 16) |
|
||||
((uint64_t)emi.opcode.prefixB << 8) |
|
||||
((uint64_t)emi.opcode.op)) ^
|
||||
emi.immediate ^ emi.displacement;
|
||||
};
|
||||
};
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue