mem: Add HMC Timing Parameters

A single HMC-2500 x32 model based on:

[1] DRAMSpec: a high-level DRAM bank modelling tool developed at the University
of Kaiserslautern. This high level tool uses RC (resistance-capacitance) and CV
(capacitance-voltage) models to estimate the DRAM bank latency and power
numbers.

[2] A Logic-base Interconnect for Supporting Near Memory Computation in the
Hybrid Memory Cube (E. Azarkhish et. al) Assumed for the HMC model is a 30 nm
technology node.  The modelled HMC consists of a 4 Gbit part with 4 layers
connected with TSVs.  Each layer has 16 vaults and each vault consists of 2
banks per layer.  In order to be able to use the same controller used for 2D
DRAM generations for HMC, the following analogy is done: Channel (DDR) => Vault
(HMC) device_size (DDR) => size of a single layer in a vault ranks per channel
(DDR) => number of layers banks per rank (DDR) => banks per layer devices per
rank (DDR) => devices per layer ( 1 for HMC).  The parameters for which no
input is available are inherited from the DDR3 configuration.
This commit is contained in:
Matthias Jung 2015-06-07 14:02:40 -05:00
parent 736d3314bf
commit 25fe4c2529

View file

@ -11,6 +11,7 @@
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2013 Amin Farmahini-Farahani
# Copyright (c) 2015 University of Kaiserslautern
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
@ -38,6 +39,8 @@
#
# Authors: Andreas Hansson
# Ani Udipi
# Omar Naji
# Matthias Jung
from m5.params import *
from AbstractMemory import *
@ -374,6 +377,92 @@ class DDR3_1600_x64(DRAMCtrl):
IDD5 = '220mA'
VDD = '1.5V'
# A single HMC-2500 x32 model based on:
# [1] DRAMSpec: a high-level DRAM bank modelling tool
# developed at the University of Kaiserslautern. This high level tool
# uses RC (resistance-capacitance) and CV (capacitance-voltage) models to
# estimate the DRAM bank latency and power numbers.
# [2] A Logic-base Interconnect for Supporting Near Memory Computation in the
# Hybrid Memory Cube (E. Azarkhish et. al)
# Assumed for the HMC model is a 30 nm technology node.
# The modelled HMC consists of 4 Gbit layers which sum up to 2GB of memory (4
# layers).
# Each layer has 16 vaults and each vault consists of 2 banks per layer.
# In order to be able to use the same controller used for 2D DRAM generations
# for HMC, the following analogy is done:
# Channel (DDR) => Vault (HMC)
# device_size (DDR) => size of a single layer in a vault
# ranks per channel (DDR) => number of layers
# banks per rank (DDR) => banks per layer
# devices per rank (DDR) => devices per layer ( 1 for HMC).
# The parameters for which no input is available are inherited from the DDR3
# configuration.
# This configuration includes the latencies from the DRAM to the logic layer of
# the HMC
class HMC_2500_x32(DDR3_1600_x64):
# size of device
# two banks per device with each bank 4MB [2]
device_size = '8MB'
# 1x32 configuration, 1 device with 32 TSVs [2]
device_bus_width = 32
# HMC is a BL8 device [2]
burst_length = 8
# Each device has a page (row buffer) size of 256 bytes [2]
device_rowbuffer_size = '256B'
# 1x32 configuration, so 1 device [2]
devices_per_rank = 1
# 4 layers so 4 ranks [2]
ranks_per_channel = 4
# HMC has 2 banks per layer [2]
# Each layer represents a rank. With 4 layers and 8 banks in total, each
# layer has 2 banks; thus 2 banks per rank.
banks_per_rank = 2
# 1250 MHz [2]
tCK = '0.8ns'
# 8 beats across an x32 interface translates to 4 clocks @ 1250 MHz
tBURST = '3.2ns'
# Values using DRAMSpec HMC model [1]
tRCD = '10.2ns'
tCL = '9.9ns'
tRP = '7.7ns'
tRAS = '21.6ns'
# tRRD depends on the power supply network for each vendor.
# We assume a tRRD of a double bank approach to be equal to 4 clock
# cycles (Assumption)
tRRD = '3.2ns'
# activation limit is set to 0 since there are only 2 banks per vault layer.
activation_limit = 0
# Values using DRAMSpec HMC model [1]
tRFC = '59ns'
tWR = '8ns'
tRTP = '4.9ns'
# Default different rank bus delay assumed to 1 CK for TSVs, @1250 MHz = 0.8
# ns (Assumption)
tCS = '0.8ns'
# Value using DRAMSpec HMC model [1]
tREFI = '3.9us'
# Set default controller parameters
page_policy = 'close'
write_buffer_size = 8
read_buffer_size = 8
addr_mapping = 'RoCoRaBaCh'
min_writes_per_switch = 8
# A single DDR3-2133 x64 channel refining a selected subset of the
# options for the DDR-1600 configuration, based on the same DDR3-1600
# 4 Gbit datasheet (Micron MT41J512M8). Most parameters are kept