Big changes to use the new microcode assembler.

--HG--
extra : convert_revision : 7d1a43c5791a2e7e30533746da3dd7036a5b8799
This commit is contained in:
Gabe Black 2007-06-08 16:09:43 +00:00
parent ce8f4c1f16
commit 1f7ed5b7b4
7 changed files with 179 additions and 131 deletions

View file

@ -60,27 +60,13 @@
// Instructions that do the same thing to multiple sets of arguments.
//
let {{
def doInst(name, Name, opTypeSet):
if not instDict.has_key(Name):
raise Exception, "Unrecognized instruction: %s" % Name
inst = instDict[Name]()
return inst.emit(opTypeSet)
}};
def format Inst(*opTypeSet) {{
(header_output,
decoder_output,
decode_block,
exce_output) = doInst(name, Name, list(opTypeSet)).makeList()
decode_block = specializeInst(Name, list(opTypeSet), EmulEnv())
}};
def format MultiInst(switchVal, *opTypeSets) {{
switcher = {}
for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
switcher[count] = (opTypeSet,)
(header_output,
decoder_output,
decode_block,
exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher).makeList()
switcher[count] = (opTypeSet, EmulEnv())
decode_block = doSplitDecode(Name, specializeInst, switchVal, switcher)
}};

View file

@ -99,6 +99,7 @@ output header {{
#include "arch/x86/faults.hh"
#include "arch/x86/isa_traits.hh"
#include "arch/x86/regfile.hh"
#include "arch/x86/types.hh"
#include "base/misc.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
@ -106,6 +107,9 @@ output header {{
}};
output decoder {{
namespace X86Macroop {
};
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "cpu/thread_context.hh" // for Jump::branchTarget()

View file

@ -71,7 +71,7 @@ def template MacroExecPanic {{
output header {{
// Base class for macroops
// Base class for combinationally generated macroops
class MacroOp : public StaticInst
{
protected:
@ -113,14 +113,17 @@ output header {{
// Basic instruction class declaration template.
def template MacroDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
namespace X86Microop
{
public:
// Constructor.
%(class_name)s(ExtMachInst machInst);
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
public:
// Constructor.
%(class_name)s(ExtMachInst machInst);
};
};
}};
@ -142,24 +145,82 @@ def template MacroConstructor {{
//
let {{
def genMacroOp(name, Name, opSeq):
numMicroOps = len(opSeq)
allocMicroOps = ''
micropc = 0
for op in opSeq:
allocMicroOps += \
"microOps[%d] = %s;\n" % \
(micropc, op.getAllocator('"' + name + '"', True, False,
#op.delayed,
micropc == 0,
micropc == numMicroOps - 1))
micropc += 1
iop = InstObjParams(name, Name, 'MacroOp',
{'code' : '', 'num_micro_ops' : numMicroOps,
'alloc_micro_ops' : allocMicroOps})
header_output = MacroDeclare.subst(iop)
decoder_output = MacroConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = ''
return (header_output, decoder_output, decode_block, exec_output)
from micro_asm import Combinational_Macroop, Rom_Macroop
class X86Macroop(Combinational_Macroop):
def __init__(self, name):
super(X86Macroop, self).__init__(name)
self.directives = {
}
self.declared = False
def getAllocator(self, env):
return "new X86Macroop::%s(machInst)" % self.name
def getDeclaration(self):
#FIXME This first parameter should be the mnemonic. I need to
#write some code which pulls that out
iop = InstObjParams(self.name, self.name, "Macroop", {"code" : ""})
return MacroDeclare.subst(iop);
def getDefinition(self):
#FIXME This first parameter should be the mnemonic. I need to
#write some code which pulls that out
numMicroops = len(self.microops)
allocMicroops = ''
micropc = 0
for op in self.microops:
allocMicroops += \
"microOps[%d] = %s;\n" % \
(micropc, op.getAllocator(True, False,
micropc == 0,
micropc == numMicroops - 1))
micropc += 1
iop = InstObjParams(self.name, self.name, "Macroop",
{"code" : "", "num_micro_ops" : numMicroops,
"alloc_micro_ops" : allocMicroops})
return MacroConstructor.subst(iop);
}};
output header {{
struct EmulEnv
{
X86ISA::RegIndex reg;
X86ISA::RegIndex regm;
uint64_t immediate;
uint64_t displacement;
int addressSize;
int dataSize;
EmulEnv(X86ISA::RegIndex _reg, X86ISA::RegIndex _regm,
uint64_t _immediate, uint64_t _displacement,
int _addressSize, int _dataSize) :
reg(_reg), regm(_regm),
immediate(_immediate), displacement(_displacement),
addressSize(_addressSize), dataSize(_dataSize)
{;}
};
}};
let {{
class EmulEnv(object):
def __init__(self):
self.reg = "Not specified"
self.regm = "Not specified"
self.immediate = "IMMEDIATE"
self.displacement = "DISPLACEMENT"
self.addressSize = "ADDRSIZE"
self.dataSize = "OPSIZE"
def getAllocator(self):
return "EmulEmv(%(reg)s, %(regm)s, %(immediate)s, %(displacement)s, %(addressSize)s, %(dataSize)s)" % \
self.__dict__()
}};
let {{
def genMacroop(Name, env):
if not macroopDict.has_key(Name):
raise Exception, "Unrecognized instruction: %s" % Name
macroop = macroopDict[Name]
if not macroop.declared:
global header_output
global decoder_output
header_output = macroop.getDeclaration()
decoder_output = macroop.getDefinition()
return "return %s;\n" % macroop.getAllocator(env)
}};

View file

@ -72,34 +72,9 @@
namespace X86ISA;
////////////////////////////////////////////////////////////////////
//
// General infrastructure code. These files provide infrastructure
// which was developed to support x86 but isn't specific to it.
//
//Include code to build macroops.
##include "macroop.isa"
////////////////////////////////////////////////////////////////////
//
// X86 only infrastructure code.
//
//Include the base class for x86 instructions, and some support code.
##include "base.isa"
//Include code to specialize an instruction template to operate on
//a particular set of operands. This is specific to x86 and the x86
//microcode ISA.
##include "specialize.isa"
////////////////////////////////////////////////////////////////////
//
// Code which directly specifies isa components like instructions
// microops, and the decoder.
//
//Include the definitions for the instruction formats
##include "formats/formats.isa"
@ -112,8 +87,17 @@ namespace X86ISA;
//internal instruction set.
##include "microops/microops.isa"
//Include the instruction definitions which are microop assembler programs.
##include "insts/insts.isa"
//Include code to build macroops.
##include "macroop.isa"
//Include the simple microcode assembler. This will hopefully stay
//unspecialized for x86 and can later be made available to other ISAs.
##include "microasm.isa"
//Include code to specialize an instruction template to operate on
//a particular set of operands. This is specific to x86 and the x86
//microcode ISA.
##include "specialize.isa"
//Include the bitfield definitions
##include "bitfields.isa"

View file

@ -55,6 +55,20 @@
//
// Authors: Gabe Black
//##include "microops/microops.isa"
//##include "macroop.isa"
let {{
import sys
sys.path[0:0] = ["src/arch/x86/isa/"]
from insts import microcode
print microcode
from micro_asm import MicroAssembler, Rom_Macroop, Rom
mainRom = Rom('main ROM')
assembler = MicroAssembler(X86Macroop, microopClasses, mainRom, Rom_Macroop)
macroopDict = assembler.assemble(microcode)
}};
////////////////////////////////////////////////////////////////////
//
// Microcode assembler specialization for x86
@ -88,6 +102,5 @@ let {{
return text
def getAllocator(self, mnemonic, *microFlags):
args = ''
return 'new %s(machInst, %s%s%s)' % (self.className, mnemonic, self.microFlagsText(microFlags), args)
return 'new %s(machInst, %s)' % (self.className, mnemonic, self.microFlagsText(microFlags))
}};

View file

@ -221,7 +221,7 @@ def template MicroRegOpImmConstructor {{
}};
let {{
class RegOp(object):
class RegOp(X86Microop):
def __init__(self, dest, src1, src2):
self.dest = dest
self.src1 = src1
@ -243,7 +243,7 @@ let {{
"dataSize" : self.dataSize,
"ext" : self.ext}
class RegOpImm(object):
class RegOpImm(X86Microop):
def __init__(self, dest, src1, imm):
self.dest = dest
self.src1 = src1
@ -274,10 +274,11 @@ let {{
decoder_output = ""
exec_output = ""
def defineMicroIntOp(mnemonic, code):
def defineMicroRegOp(mnemonic, code):
global header_output
global decoder_output
global exec_output
global microopClasses
Name = mnemonic
name = mnemonic.lower()
@ -296,7 +297,8 @@ let {{
class RegOpChild(RegOp):
def __init__(self, dest, src1, src2):
super(RegOpChild, self).__init__(self, dest, src1, src2)
super(RegOpChild, self).__init__(dest, src1, src2)
self.className = Name
self.mnemonic = name
microopClasses[name] = RegOpChild
@ -310,19 +312,20 @@ let {{
class RegOpImmChild(RegOpImm):
def __init__(self, dest, src1, imm):
super(RegOpImmChild, self).__init__(self, dest, src1, imm)
super(RegOpImmChild, self).__init__(dest, src1, imm)
self.className = Name + "Imm"
self.mnemonic = name + "i"
microopClasses[name + "i"] = RegOpChild
defineMicroIntOp('Add', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to set OF,CF,SF
defineMicroIntOp('Or', 'DestReg = merge(DestReg, SrcReg1 | op2, dataSize)')
defineMicroIntOp('Adc', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to add in CF, set OF,CF,SF
defineMicroIntOp('Sbb', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to subtract CF, set OF,CF,SF
defineMicroIntOp('And', 'DestReg = merge(DestReg, SrcReg1 & op2, dataSize)')
defineMicroIntOp('Sub', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to set OF,CF,SF
defineMicroIntOp('Xor', 'DestReg = merge(DestReg, SrcReg1 ^ op2, dataSize)')
defineMicroIntOp('Cmp', 'DestReg = merge(DestReg, DestReg - op2, dataSize)') #Needs to set OF,CF,SF and not DestReg
defineMicroIntOp('Mov', 'DestReg = merge(SrcReg1, op2, dataSize)')
defineMicroRegOp('Add', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to set OF,CF,SF
defineMicroRegOp('Or', 'DestReg = merge(DestReg, SrcReg1 | op2, dataSize)')
defineMicroRegOp('Adc', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to add in CF, set OF,CF,SF
defineMicroRegOp('Sbb', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to subtract CF, set OF,CF,SF
defineMicroRegOp('And', 'DestReg = merge(DestReg, SrcReg1 & op2, dataSize)')
defineMicroRegOp('Sub', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to set OF,CF,SF
defineMicroRegOp('Xor', 'DestReg = merge(DestReg, SrcReg1 ^ op2, dataSize)')
defineMicroRegOp('Cmp', 'DestReg = merge(DestReg, DestReg - op2, dataSize)') #Needs to set OF,CF,SF and not DestReg
defineMicroRegOp('Mov', 'DestReg = merge(SrcReg1, op2, dataSize)')
}};

View file

@ -66,24 +66,23 @@ let {{
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
blocks = OutputBlocks()
blocks.decode_block += 'switch(%s) {\n' % switchVal
def doSplitDecode(Name, builder, switchVal, vals, default = None):
decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
built = builder(name, Name, *todo)
built.decode_block = '\tcase %s: %s\n' % (val, built.decode_block)
blocks.append(built)
new_block = builder(Name, *todo)
new_block = '\tcase %s: %s\n' % (val, new_block)
decode_block += new_block
if default:
built = builder(name, Name, *default)
built.decode_block = '\tdefault: %s\n' % built.decode_block
blocks.append(built)
blocks.decode_block += '}\n'
return blocks
new_block = builder(Name, *default)
new_block = '\tdefault: %s\n' % new_block
decode_block += new_block
decode_block += '}\n'
return decode_block
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9])(?P<rsize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
@ -91,74 +90,72 @@ let {{
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
self.rsize = match.group("rsize")
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes". These are "implemented"
# in reverse order.
def specializeInst(name, Name, code, opTypes):
opNum = len(opTypes) - 1
# set of argument types described by "opTypes".
def specializeInst(Name, opTypes, env):
while len(opTypes):
# print "Building a composite op with tags", opTypes
# print "And code", code
opNum = len(opTypes) - 1
# A regular expression to find the operand placeholders we're
# interested in.
opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
# Parse the operand type strign we're working with
# Parse the operand type string we're working with
opType = OpType(opTypes[opNum])
if opType.reg:
#Figure out what to do with fixed register operands
if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
elif opType.reg == "Al":
# We need a way to specify register width
code = opRe.sub("%{INTREG_RAX}", code)
else:
print "Didn't know how to encode fixed register %s!" % opType.reg
#This is the index to use, so we should stick it some place.
print "INTREG_R%s" % (opType.reg + opType.size.upper())
if opType.size:
if opType.rsize in ("l", "h", "b"):
print "byte"
elif opType.rsize == "x":
print "word"
else:
print "Didn't recognize fixed register size %s!" % opType.rsize
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
print "(uint8_t)MODRM_REG"
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
print "(uint8_t)MODRM_RM"
regTypes = copy.copy(opTypes)
regTypes.pop(-1)
regTypes.pop(0)
regEnv = copy.copy(env)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
code = "GenFault ${new UnimpInstFault}\n" + code
memCode = opRe.sub("%0", code)
# code = "GenFault #${new UnimpInstFault}#\n" + code
print "%0"
memTypes = copy.copy(opTypes)
memTypes.pop(-1)
return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
{"3" : (regCode, regTypes)}, (memCode, memTypes))
memTypes.pop(0)
memEnv = copy.copy(env)
return doSplitDecode(Name, specializeInst, "MODRM_MOD",
{"3" : (regTypes, memEnv)}, (memTypes, memEnv))
elif opType.tag in ("I", "J"):
# Immediates are already in the instruction, so don't leave in
# those parameters
code = opRe.sub("${IMMEDIATE}", code)
print "IMMEDIATE"
elif opType.tag == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
code = "GenFault ${new UnimpInstFault}\n" + code
code = opRe.sub("%0", code)
#code = "GenFault #${new UnimpInstFault}#\n" + code
print "%0"
elif opType.tag in ("PR", "R", "VR"):
# There should probably be a check here to verify that mod
# is equal to 11b
code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
print "(uint8_t)MODRM_RM"
else:
raise Exception, "Unrecognized tag %s." % opType.tag
opTypes.pop(-1)
opTypes.pop(0)
# At this point, we've built up "code" to have all the necessary extra
# instructions needed to implement whatever types of operands were
# specified. Now we'll assemble it it into a StaticInst.
blocks = OutputBlocks()
blocks.append(assembleMicro(name, Name, code))
return blocks
return genMacroop(Name, env)
}};