Significant changes to ISA description to completely factor

out CPU model.  ISA description now generates multiple
output source files to (in theory) reduce compilation time.

arch/alpha/isa_desc:
    Update for parser changes.  Move most constructors
    out of class declarations (which are now in decoder.hh)
    and into decoder.cc.  Move all execute() methods into
    exec output.
arch/isa_parser.py:
    Significant changes to make ISA description completely
    independent of CPU model, and isolate model-dependent parts
    of parser into one little class (CpuModel).  Also split up code
    output into multiple files (a header, a main source file, and
    per-cpu execute() method files).

    Noticeable changes to language as a result.  See updated Doxygen
    documentation.
cpu/simple_cpu/simple_cpu.hh:
    SimpleCPUExecContext typedef no longer needed.
    Add forward declaration of Process.
cpu/static_inst.hh:
    SimpleCPUExecContext and FullCPUExecContext typedefs no longer needed.
    Make eaCompInst() and memAccInst() return const refs.

--HG--
extra : convert_revision : 71471f267804fafd0a881bac7445677e76334daf
This commit is contained in:
Steve Reinhardt 2004-05-17 11:49:46 -07:00
parent 32a8827b3e
commit 1d545281b9
4 changed files with 1244 additions and 885 deletions

File diff suppressed because it is too large Load diff

View file

@ -63,8 +63,9 @@ import yacc
# using the same regexp as generic IDs, but distinguished in the # using the same regexp as generic IDs, but distinguished in the
# t_ID() function. The PLY documentation suggests this approach. # t_ID() function. The PLY documentation suggests this approach.
reserved = ( reserved = (
'BITFIELD', 'DECLARE', 'DECODE', 'DEFAULT', 'DEF', 'FORMAT', 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
'LET', 'NAMESPACE', 'SIGNED', 'TEMPLATE' 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
'OUTPUT', 'SIGNED', 'TEMPLATE'
) )
# List of tokens. The lex module requires this. # List of tokens. The lex module requires this.
@ -195,14 +196,6 @@ lex.lex()
# (by assigning to t[0]). # (by assigning to t[0]).
##################################################################### #####################################################################
# Not sure why, but we get a handful of shift/reduce conflicts on DECLARE.
# By default these get resolved as shifts, which is correct, but
# warnings are printed. Explicitly marking DECLARE as right-associative
# suppresses the warnings.
precedence = (
('right', 'DECLARE'),
)
# The LHS of the first grammar rule is used as the start symbol # The LHS of the first grammar rule is used as the start symbol
# (in this case, 'specification'). Note that this rule enforces # (in this case, 'specification'). Note that this rule enforces
# that there will be exactly one namespace declaration, with 0 or more # that there will be exactly one namespace declaration, with 0 or more
@ -210,163 +203,123 @@ precedence = (
# the namespace decl will be outside the namespace; those after # the namespace decl will be outside the namespace; those after
# will be inside. The decoder function is always inside the namespace. # will be inside. The decoder function is always inside the namespace.
def p_specification(t): def p_specification(t):
'specification : opt_defs_and_declares name_decl opt_defs_and_declares decode_block' 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
global_decls1 = t[1] global_code = t[1]
isa_name = t[2] isa_name = t[2]
namespace = isa_name + "Inst" namespace = isa_name + "Inst"
global_decls2 = t[3] # wrap the decode block as a function definition
(inst_decls, decode_code, exec_code) = t[4] t[4].wrap_decode_block('''
decode_code = indent(decode_code)
# grab the last three path components of isa_desc_filename
filename = '/'.join(isa_desc_filename.split('/')[-3:])
# if the isa_desc file defines a 'rcs_id' string,
# echo that into the output too
try:
local_rcs_id = rcs_id
# strip $s out of ID so it doesn't get re-substituted
local_rcs_id = re.sub(r'\$', '', local_rcs_id)
except NameError:
local_rcs_id = 'Id: no RCS id found'
output = open(decoder_filename, 'w')
# split string to keep rcs from substituting this file's RCS id in
print >> output, '/* $Id' + '''$ */
/*
* Copyright (c) 2003
* The Regents of The University of Michigan
* All Rights Reserved
*
* This code is part of the M5 simulator, developed by Nathan Binkert,
* Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
* from Ron Dreslinski, Dave Greene, and Lisa Hsu.
*
* Permission is granted to use, copy, create derivative works and
* redistribute this software and such derivative works for any
* purpose, so long as the copyright notice above, this grant of
* permission, and the disclaimer below appear in all copies made; and
* so long as the name of The University of Michigan is not used in
* any advertising or publicity pertaining to the use or distribution
* of this software without specific, written prior authorization.
*
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
* UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND
* WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE
* LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM
* ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES.
*/
/*
* DO NOT EDIT THIS FILE!!!
*
* It was automatically generated from this ISA description:
* Filename: %(filename)s
* RCS %(local_rcs_id)s
*/
#include "base/bitfield.hh" // required for bitfield support
/////////////////////////////////////
// Global defs (outside namespace) //
/////////////////////////////////////
%(global_decls1)s
/**
* Namespace for %(isa_name)s static instruction objects.
*/
namespace %(namespace)s
{
/////////////////////////////////////
// Global defs (within namespace) //
/////////////////////////////////////
%(global_decls2)s
////////////////////////////////////
// Declares from inst definitions //
////////////////////////////////////
%(inst_decls)s
%(exec_code)s
} // namespace %(namespace)s
//////////////////////
// Decoder function //
//////////////////////
StaticInstPtr<%(isa_name)s> StaticInstPtr<%(isa_name)s>
%(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst) %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
{ {
using namespace %(namespace)s; using namespace %(namespace)s;
%(decode_code)s ''' % vars(), '}')
} // decodeInst # both the latter output blocks and the decode block are in the namespace
''' % vars() namespace_code = t[3] + t[4]
output.close() # pass it all back to the caller of yacc.parse()
t[0] = (isa_name, namespace, global_code, namespace_code)
# ISA name declaration looks like "namespace <foo>;" # ISA name declaration looks like "namespace <foo>;"
def p_name_decl(t): def p_name_decl(t):
'name_decl : NAMESPACE ID SEMI' 'name_decl : NAMESPACE ID SEMI'
t[0] = t[2] t[0] = t[2]
# 'opt_defs_and_declares' is a possibly empty sequence of # 'opt_defs_and_outputs' is a possibly empty sequence of
# defs and/or declares. # def and/or output statements.
def p_opt_defs_and_declares_0(t): def p_opt_defs_and_outputs_0(t):
'opt_defs_and_declares : empty' 'opt_defs_and_outputs : empty'
t[0] = '' t[0] = GenCode()
def p_opt_defs_and_declares_1(t): def p_opt_defs_and_outputs_1(t):
'opt_defs_and_declares : defs_and_declares' 'opt_defs_and_outputs : defs_and_outputs'
t[0] = t[1] t[0] = t[1]
def p_defs_and_declares_0(t): def p_defs_and_outputs_0(t):
'defs_and_declares : def_or_declare' 'defs_and_outputs : def_or_output'
t[0] = t[1] t[0] = t[1]
def p_defs_and_declares_1(t): def p_defs_and_outputs_1(t):
'defs_and_declares : defs_and_declares def_or_declare' 'defs_and_outputs : defs_and_outputs def_or_output'
t[0] = t[1] + t[2] t[0] = t[1] + t[2]
# The list of possible definition/declaration statements. # The list of possible definition/output statements.
def p_def_or_declare(t): def p_def_or_output(t):
'''def_or_declare : def_format '''def_or_output : def_format
| def_bitfield | def_bitfield
| def_template | def_template
| global_declare | def_operand_types
| global_let | def_operands
| cpp_directive''' | output_header
| output_decoder
| output_exec
| global_let'''
t[0] = t[1] t[0] = t[1]
# preprocessor directives are copied directly to the output. # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
def p_cpp_directive(t): # directly to the appropriate output section.
'''cpp_directive : CPPDIRECTIVE'''
t[0] = t[1]
# Global declares 'declare {{...}}' (C++ code blocks) are copied # Massage output block by substituting in template definitions and bit
# directly to the output. # operators. We handle '%'s embedded in the string that don't
def p_global_declare(t): # indicate template substitutions (or CPU-specific symbols, which get
'global_declare : DECLARE CODELIT SEMI' # handled in GenCode) by doubling them first so that the format
t[0] = substBitOps(t[2]) # operation will reduce them back to single '%'s.
def process_output(s):
# protect any non-substitution '%'s (not followed by '(')
s = re.sub(r'%(?!\()', '%%', s)
# protects cpu-specific symbols too
s = protect_cpu_symbols(s)
return substBitOps(s % templateMap)
def p_output_header(t):
'output_header : OUTPUT HEADER CODELIT SEMI'
t[0] = GenCode(header_output = process_output(t[3]))
def p_output_decoder(t):
'output_decoder : OUTPUT DECODER CODELIT SEMI'
t[0] = GenCode(decoder_output = process_output(t[3]))
def p_output_exec(t):
'output_exec : OUTPUT EXEC CODELIT SEMI'
t[0] = GenCode(exec_output = process_output(t[3]))
# global let blocks 'let {{...}}' (Python code blocks) are executed # global let blocks 'let {{...}}' (Python code blocks) are executed
# directly when seen. These are typically used to initialize global # directly when seen. Note that these execute in a special variable
# Python variables used in later format definitions. # context 'exportContext' to prevent the code from polluting this
# script's namespace.
def p_global_let(t): def p_global_let(t):
'global_let : LET CODELIT SEMI' 'global_let : LET CODELIT SEMI'
updateExportContext()
try: try:
exec(fixPythonIndentation(t[2])) exec fixPythonIndentation(t[2]) in exportContext
except: except Exception, exc:
error_bt(t.lineno(1), 'error in global let block "%s".' % t[2]) error(t.lineno(1),
t[0] = '' # contributes nothing to the output C++ file 'error: %s in global let block "%s".' % (exc, t[2]))
t[0] = GenCode() # contributes nothing to the output C++ file
# Define the mapping from operand type extensions to C++ types and bit
# widths (stored in operandTypeMap).
def p_def_operand_types(t):
'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
s = 'global operandTypeMap; operandTypeMap = {' + t[3] + '}'
try:
exec s
except Exception, exc:
error(t.lineno(1),
'error: %s in def operand_types block "%s".' % (exc, t[3]))
t[0] = GenCode() # contributes nothing to the output C++ file
# Define the mapping from operand names to operand classes and other
# traits. Stored in operandTraitsMap.
def p_def_operands(t):
'def_operands : DEF OPERANDS CODELIT SEMI'
s = 'global operandTraitsMap; operandTraitsMap = {' + t[3] + '}'
try:
exec s
except Exception, exc:
error(t.lineno(1),
'error: %s in def operands block "%s".' % (exc, t[3]))
defineDerivedOperandVars()
t[0] = GenCode() # contributes nothing to the output C++ file
# A bitfield definition looks like: # A bitfield definition looks like:
# 'def [signed] bitfield <ID> [<first>:<last>]' # 'def [signed] bitfield <ID> [<first>:<last>]'
@ -376,7 +329,8 @@ def p_def_bitfield_0(t):
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
if (t[2] == 'signed'): if (t[2] == 'signed'):
expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
t[0] = GenCode(header_output = hash_define)
# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]' # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
def p_def_bitfield_1(t): def p_def_bitfield_1(t):
@ -384,7 +338,8 @@ def p_def_bitfield_1(t):
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
if (t[2] == 'signed'): if (t[2] == 'signed'):
expr = 'sext<%d>(%s)' % (1, expr) expr = 'sext<%d>(%s)' % (1, expr)
t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
t[0] = GenCode(header_output = hash_define)
def p_opt_signed_0(t): def p_opt_signed_0(t):
'opt_signed : SIGNED' 'opt_signed : SIGNED'
@ -399,8 +354,8 @@ templateMap = {}
def p_def_template(t): def p_def_template(t):
'def_template : DEF TEMPLATE ID CODELIT SEMI' 'def_template : DEF TEMPLATE ID CODELIT SEMI'
templateMap[t[3]] = t[4] templateMap[t[3]] = Template(t[4])
t[0] = '' t[0] = GenCode()
# An instruction format definition looks like # An instruction format definition looks like
# "def format <fmt>(<params>) {{...}};" # "def format <fmt>(<params>) {{...}};"
@ -408,12 +363,7 @@ def p_def_format(t):
'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
(id, params, code) = (t[3], t[5], t[7]) (id, params, code) = (t[3], t[5], t[7])
defFormat(id, params, code, t.lineno(1)) defFormat(id, params, code, t.lineno(1))
# insert a comment into the output to note that the def was processed t[0] = GenCode()
t[0] = '''
//
// parser: format %s defined
//
''' % id
# The formal parameter list for an instruction format is a possibly # The formal parameter list for an instruction format is a possibly
# empty list of comma-separated parameters. # empty list of comma-separated parameters.
@ -453,19 +403,13 @@ def p_param_1(t):
def p_decode_block(t): def p_decode_block(t):
'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
default_defaults = defaultStack.pop() default_defaults = defaultStack.pop()
(decls, decode_code, exec_code, has_default) = t[5] codeObj = t[5]
# use the "default defaults" only if there was no explicit # use the "default defaults" only if there was no explicit
# default statement in decode_stmt_list # default statement in decode_stmt_list
if not has_default: if not codeObj.has_decode_default:
(default_decls, default_decode, default_exec) = default_defaults codeObj += default_defaults
decls += default_decls codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
decode_code += default_decode t[0] = codeObj
exec_code += default_exec
t[0] = (decls, '''
switch (%s) {
%s
}
''' % (t[2], indent(decode_code)), exec_code)
# The opt_default statement serves only to push the "default defaults" # The opt_default statement serves only to push the "default defaults"
# onto defaultStack. This value will be used by nested decode blocks, # onto defaultStack. This value will be used by nested decode blocks,
@ -481,8 +425,9 @@ def p_opt_default_0(t):
def p_opt_default_1(t): def p_opt_default_1(t):
'opt_default : DEFAULT inst' 'opt_default : DEFAULT inst'
# push the new default # push the new default
(decls, decode_code, exec_code) = t[2] codeObj = t[2]
defaultStack.push((decls, '\ndefault:\n%sbreak;' % decode_code, exec_code)) codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
defaultStack.push(codeObj)
# no meaningful value returned # no meaningful value returned
t[0] = None t[0] = None
@ -492,12 +437,9 @@ def p_decode_stmt_list_0(t):
def p_decode_stmt_list_1(t): def p_decode_stmt_list_1(t):
'decode_stmt_list : decode_stmt decode_stmt_list' 'decode_stmt_list : decode_stmt decode_stmt_list'
(decls1, decode_code1, exec_code1, has_default1) = t[1] if (t[1].has_decode_default and t[2].has_decode_default):
(decls2, decode_code2, exec_code2, has_default2) = t[2]
if (has_default1 and has_default2):
error(t.lineno(1), 'Two default cases in decode block') error(t.lineno(1), 'Two default cases in decode block')
t[0] = (decls1 + '\n' + decls2, decode_code1 + '\n' + decode_code2, t[0] = t[1] + t[2]
exec_code1 + '\n' + exec_code2, has_default1 or has_default2)
# #
# Decode statement rules # Decode statement rules
@ -510,7 +452,7 @@ def p_decode_stmt_list_1(t):
# Preprocessor directives found in a decode statement list are passed # Preprocessor directives found in a decode statement list are passed
# through to the output, replicated to both the declaration and decode # through to the output, replicated to all of the output code
# streams. This works well for ifdefs, so we can ifdef out both the # streams. This works well for ifdefs, so we can ifdef out both the
# declarations and the decode cases generated by an instruction # declarations and the decode cases generated by an instruction
# definition. Handling them as part of the grammar makes it easy to # definition. Handling them as part of the grammar makes it easy to
@ -518,7 +460,7 @@ def p_decode_stmt_list_1(t):
# the other statements. # the other statements.
def p_decode_stmt_cpp(t): def p_decode_stmt_cpp(t):
'decode_stmt : CPPDIRECTIVE' 'decode_stmt : CPPDIRECTIVE'
t[0] = (t[1], t[1], t[1], 0) t[0] = GenCode(t[1], t[1], t[1], t[1])
# A format block 'format <foo> { ... }' sets the default instruction # A format block 'format <foo> { ... }' sets the default instruction
# format used to handle instruction definitions inside the block. # format used to handle instruction definitions inside the block.
@ -547,29 +489,31 @@ def p_push_format_id(t):
# specified constant, do a nested decode on some other field. # specified constant, do a nested decode on some other field.
def p_decode_stmt_decode(t): def p_decode_stmt_decode(t):
'decode_stmt : case_label COLON decode_block' 'decode_stmt : case_label COLON decode_block'
(label, is_default) = t[1] label = t[1]
(decls, decode_code, exec_code) = t[3] codeObj = t[3]
# just wrap the decoding code from the block as a case in the # just wrap the decoding code from the block as a case in the
# outer switch statement. # outer switch statement.
t[0] = (decls, '\n%s:\n%s' % (label, indent(decode_code)), codeObj.wrap_decode_block('\n%s:\n' % label)
exec_code, is_default) codeObj.has_decode_default = (label == 'default')
t[0] = codeObj
# Instruction definition (finally!). # Instruction definition (finally!).
def p_decode_stmt_inst(t): def p_decode_stmt_inst(t):
'decode_stmt : case_label COLON inst SEMI' 'decode_stmt : case_label COLON inst SEMI'
(label, is_default) = t[1] label = t[1]
(decls, decode_code, exec_code) = t[3] codeObj = t[3]
t[0] = (decls, '\n%s:%sbreak;' % (label, indent(decode_code)), codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
exec_code, is_default) codeObj.has_decode_default = (label == 'default')
t[0] = codeObj
# The case label is either a list of one or more constants or 'default' # The case label is either a list of one or more constants or 'default'
def p_case_label_0(t): def p_case_label_0(t):
'case_label : intlit_list' 'case_label : intlit_list'
t[0] = (': '.join(map(lambda a: 'case %#x' % a, t[1])), 0) t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
def p_case_label_1(t): def p_case_label_1(t):
'case_label : DEFAULT' 'case_label : DEFAULT'
t[0] = ('default', 1) t[0] = 'default'
# #
# The constant list for a decode case label must be non-empty, but may have # The constant list for a decode case label must be non-empty, but may have
@ -591,13 +535,13 @@ def p_inst_0(t):
'inst : ID LPAREN arg_list RPAREN' 'inst : ID LPAREN arg_list RPAREN'
# Pass the ID and arg list to the current format class to deal with. # Pass the ID and arg list to the current format class to deal with.
currentFormat = formatStack.top() currentFormat = formatStack.top()
(decls, decode_code, exec_code) = \ codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
currentFormat.defineInst(t[1], t[3], t.lineno(1))
args = ','.join(map(str, t[3])) args = ','.join(map(str, t[3]))
args = re.sub('(?m)^', '//', args) args = re.sub('(?m)^', '//', args)
args = re.sub('^//', '', args) args = re.sub('^//', '', args)
comment = '// %s::%s(%s)\n' % (currentFormat.id, t[1], args) comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
t[0] = (comment + decls, comment + decode_code, comment + exec_code) codeObj.prepend_all(comment)
t[0] = codeObj
# Define an instruction using an explicitly specified format: # Define an instruction using an explicitly specified format:
# "<fmt>::<mnemonic>(<args>)" # "<fmt>::<mnemonic>(<args>)"
@ -607,10 +551,10 @@ def p_inst_1(t):
format = formatMap[t[1]] format = formatMap[t[1]]
except KeyError: except KeyError:
error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
(decls, decode_code, exec_code) = \ codeObj = format.defineInst(t[3], t[5], t.lineno(1))
format.defineInst(t[3], t[5], t.lineno(1)) comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
comment = '// %s::%s(%s)\n' % (t[1], t[3], t[5]) codeObj.prepend_all(comment)
t[0] = (comment + decls, comment + decode_code, comment + exec_code) t[0] = codeObj
def p_arg_list_0(t): def p_arg_list_0(t):
'arg_list : empty' 'arg_list : empty'
@ -652,6 +596,133 @@ def p_error(t):
# Now build the parser. # Now build the parser.
yacc.yacc() yacc.yacc()
#####################################################################
#
# Support Classes
#
#####################################################################
################
# CpuModel class
#
# The CpuModel class encapsulates everything we need to know about a
# particular CPU model.
class CpuModel:
# List of all CPU models. Accessible as CpuModel.list.
list = []
# Constructor. Automatically adds models to CpuModel.list.
def __init__(self, name, filename, includes, strings):
self.name = name
self.filename = filename # filename for output exec code
self.includes = includes # include files needed in exec file
# The 'strings' dict holds all the per-CPU symbols we can
# substitute into templates etc.
self.strings = strings
# Add self to list.
CpuModel.list.append(self)
# Define CPU models. The following lines should contain the only
# CPU-model-specific information in this file. Note that the ISA
# description itself should have *no* CPU-model-specific content.
CpuModel('SimpleCPU', 'simple_cpu_exec.cc',
'#include "cpu/simple_cpu/simple_cpu.hh"',
{ 'CPU_exec_context': 'SimpleCPU' })
CpuModel('FullCPU', 'full_cpu_exec.cc',
'#include "cpu/full_cpu/dyn_inst.hh"',
{ 'CPU_exec_context': 'DynInst' })
# Expand template with CPU-specific references into a dictionary with
# an entry for each CPU model name. The entry key is the model name
# and the corresponding value is the template with the CPU-specific
# refs substituted for that model.
def expand_cpu_symbols_to_dict(template):
# Protect '%'s that don't go with CPU-specific terms
t = re.sub(r'%(?!\(CPU_)', '%%', template)
result = {}
for cpu in CpuModel.list:
result[cpu.name] = t % cpu.strings
return result
# *If* the template has CPU-specific references, return a single
# string containing a copy of the template for each CPU model with the
# corresponding values substituted in. If the template has no
# CPU-specific references, it is returned unmodified.
def expand_cpu_symbols_to_string(template):
if template.find('%(CPU_') != -1:
return reduce(lambda x,y: x+y,
expand_cpu_symbols_to_dict(template).values())
else:
return template
# Protect CPU-specific references by doubling the corresponding '%'s
# (in preparation for substituting a different set of references into
# the template).
def protect_cpu_symbols(template):
return re.sub(r'%(?=\(CPU_)', '%%', template)
###############
# GenCode class
#
# The GenCode class encapsulates generated code destined for various
# output files. The header_output and decoder_output attributes are
# strings containing code destined for decoder.hh and decoder.cc
# respectively. The decode_block attribute contains code to be
# incorporated in the decode function itself (that will also end up in
# decoder.cc). The exec_output attribute is a dictionary with a key
# for each CPU model name; the value associated with a particular key
# is the string of code for that CPU model's exec.cc file. The
# has_decode_default attribute is used in the decode block to allow
# explicit default clauses to override default default clauses.
class GenCode:
# Constructor. At this point we substitute out all CPU-specific
# symbols. For the exec output, these go into the per-model
# dictionary. For all other output types they get collapsed into
# a single string.
def __init__(self,
header_output = '', decoder_output = '', exec_output = '',
decode_block = '', has_decode_default = False):
self.header_output = expand_cpu_symbols_to_string(header_output)
self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
if isinstance(exec_output, dict):
self.exec_output = exec_output
elif isinstance(exec_output, str):
# If the exec_output arg is a single string, we replicate
# it for each of the CPU models, substituting and
# %(CPU_foo)s params appropriately.
self.exec_output = expand_cpu_symbols_to_dict(exec_output)
self.decode_block = expand_cpu_symbols_to_string(decode_block)
self.has_decode_default = has_decode_default
# Override '+' operator: generate a new GenCode object that
# concatenates all the individual strings in the operands.
def __add__(self, other):
exec_output = {}
for cpu in CpuModel.list:
n = cpu.name
exec_output[n] = self.exec_output[n] + other.exec_output[n]
return GenCode(self.header_output + other.header_output,
self.decoder_output + other.decoder_output,
exec_output,
self.decode_block + other.decode_block,
self.has_decode_default or other.has_decode_default)
# Prepend a string (typically a comment) to all the strings.
def prepend_all(self, pre):
self.header_output = pre + self.header_output
self.decoder_output = pre + self.decoder_output
self.decode_block = pre + self.decode_block
for cpu in CpuModel.list:
self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
# Wrap the decode block in a pair of strings (e.g., 'case foo:'
# and 'break;'). Used to build the big nested switch statement.
def wrap_decode_block(self, pre, post = ''):
self.decode_block = pre + indent(self.decode_block) + post
################ ################
# Format object. # Format object.
# #
@ -664,24 +735,31 @@ class Format:
# constructor: just save away arguments # constructor: just save away arguments
self.id = id self.id = id
self.params = params self.params = params
# strip blank lines from code (ones at the end are troublesome) label = 'def format ' + id
code = re.sub(r'(?m)^\s*$', '', code); self.user_code = compile(fixPythonIndentation(code), label, 'exec')
if code == '':
code = ' pass\n'
param_list = string.join(params, ", ") param_list = string.join(params, ", ")
f = 'def defInst(name, Name, ' + param_list + '):\n' + code f = '''def defInst(_code, _context, %s):
c = compile(f, 'def format ' + id, 'exec') my_locals = vars().copy()
exec(c) exec _code in _context, my_locals
return my_locals\n''' % param_list
c = compile(f, label + ' wrapper', 'exec')
exec c
self.func = defInst self.func = defInst
def defineInst(self, name, args, lineno): def defineInst(self, name, args, lineno):
# automatically provide a capitalized version of mnemonic context = {}
Name = string.capitalize(name) updateExportContext()
context.update(exportContext)
context.update({ 'name': name, 'Name': string.capitalize(name) })
try: try:
retval = self.func(name, Name, *args) vars = self.func(self.user_code, context, *args)
except: except Exception, exc:
error_bt(lineno, 'error defining "%s".' % name) error(lineno, 'error defining "%s": %s.' % (name, exc))
return retval for k in vars.keys():
if k not in ('header_output', 'decoder_output',
'exec_output', 'decode_block'):
del vars[k]
return GenCode(**vars)
# Special null format to catch an implicit-format instruction # Special null format to catch an implicit-format instruction
# definition outside of any format block. # definition outside of any format block.
@ -766,13 +844,13 @@ def fixPythonIndentation(s):
# Error handler. Just call exit. Output formatted to work under # Error handler. Just call exit. Output formatted to work under
# Emacs compile-mode. # Emacs compile-mode.
def error(lineno, string): def error(lineno, string):
sys.exit("%s:%d: %s" % (isa_desc_filename, lineno, string)) sys.exit("%s:%d: %s" % (input_filename, lineno, string))
# Like error(), but include a Python stack backtrace (for processing # Like error(), but include a Python stack backtrace (for processing
# Python exceptions). # Python exceptions).
def error_bt(lineno, string): def error_bt(lineno, string):
traceback.print_exc() traceback.print_exc()
print >> sys.stderr, "%s:%d: %s" % (isa_desc_filename, lineno, string) print >> sys.stderr, "%s:%d: %s" % (input_filename, lineno, string)
sys.exit(1) sys.exit(1)
@ -817,6 +895,37 @@ def substBitOps(code):
return code return code
####################
# Template objects.
#
# Template objects are format strings that allow substitution from
# the attribute spaces of other objects (e.g. InstObjParams instances).
class Template:
def __init__(self, t):
self.template = t
def subst(self, d):
# Start with the template namespace. Make a copy since we're
# going to modify it.
myDict = templateMap.copy()
# if the argument is a dictionary, we just use it.
if isinstance(d, dict):
myDict.update(d)
# if the argument is an object, we use its attribute map.
elif hasattr(d, '__dict__'):
myDict.update(d.__dict__)
else:
raise TypeError, "Template.subst() arg must be or have dictionary"
# CPU-model-specific substitutions are handled later (in GenCode).
return protect_cpu_symbols(self.template) % myDict
# Convert to string. This handles the case when a template with a
# CPU-specific term gets interpolated into another template or into
# an output block.
def __str__(self):
return expand_cpu_symbols_to_string(self.template)
##################################################################### #####################################################################
# #
# Code Parser # Code Parser
@ -1111,6 +1220,22 @@ class NPCOperandTraits(OperandTraits):
return 'xc->setNextPC(%s);\n' % op_desc.munged_name return 'xc->setNextPC(%s);\n' % op_desc.munged_name
exportContextSymbols = ('IntRegOperandTraits', 'FloatRegOperandTraits',
'ControlRegOperandTraits', 'MemOperandTraits',
'NPCOperandTraits', 'InstObjParams', 'CodeBlock',
're', 'string')
exportContext = {}
def updateExportContext():
exportContext.update(exportDict(*exportContextSymbols))
exportContext.update(templateMap)
def exportDict(*symNames):
return dict([(s, eval(s)) for s in symNames])
# #
# Define operand variables that get derived from the basic declaration # Define operand variables that get derived from the basic declaration
# of ISA-specific operands in operandTraitsMap. This function must be # of ISA-specific operands in operandTraitsMap. This function must be
@ -1385,10 +1510,6 @@ class InstObjParams:
self.mnemonic = mnem self.mnemonic = mnem
self.class_name = class_name self.class_name = class_name
self.base_class = base_class self.base_class = base_class
self.exec_func_declarations = '''
Fault execute(SimpleCPUExecContext *, Trace::InstRecord *);
Fault execute(FullCPUExecContext *, Trace::InstRecord *);
'''
if code_block: if code_block:
for code_attr in code_block.__dict__.keys(): for code_attr in code_block.__dict__.keys():
setattr(self, code_attr, getattr(code_block, code_attr)) setattr(self, code_attr, getattr(code_block, code_attr))
@ -1419,48 +1540,125 @@ class InstObjParams:
else: else:
self.fp_enable_check = '' self.fp_enable_check = ''
def _subst(self, template): #######################
try: #
return template % self.__dict__ # Output file template
except KeyError, key: #
raise KeyError, 'InstObjParams.subst: no definition for %s' % key
def subst(self, *args): file_template = '''
result = [] /*
for t in args: * Copyright (c) 2003
try: template = templateMap[t] * The Regents of The University of Michigan
except KeyError: * All Rights Reserved
error(0, 'InstObjParams::subst: undefined template "%s"' % t) *
if template.find('%(cpu_model)') != -1: * This code is part of the M5 simulator, developed by Nathan Binkert,
tmp = '' * Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
for cpu_model in ('SimpleCPUExecContext', 'FullCPUExecContext'): * from Ron Dreslinski, Dave Greene, and Lisa Hsu.
self.cpu_model = cpu_model *
tmp += self._subst(template) * Permission is granted to use, copy, create derivative works and
result.append(tmp) * redistribute this software and such derivative works for any
else: * purpose, so long as the copyright notice above, this grant of
result.append(self._subst(template)) * permission, and the disclaimer below appear in all copies made; and
if len(args) == 1: * so long as the name of The University of Michigan is not used in
result = result[0] * any advertising or publicity pertaining to the use or distribution
return result * of this software without specific, written prior authorization.
*
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
* UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND
* WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE
* LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM
* ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES.
*/
/*
* DO NOT EDIT THIS FILE!!!
*
* It was automatically generated from the ISA description in %(filename)s
*/
%(includes)s
%(global_output)s
namespace %(namespace)s {
%(namespace_output)s
} // namespace %(namespace)s
'''
# Update the output file only if the new contents are different from
# the current contents. Minimizes the files that need to be rebuilt
# after minor changes.
def update_if_needed(file, contents):
update = False
if os.access(file, os.R_OK):
f = open(file, 'r')
old_contents = f.read()
f.close()
if contents != old_contents:
print 'Updating', file
os.remove(file) # in case it's write-protected
update = True
else:
print 'File', file, 'is unchanged'
else:
print 'Generating', file
update = True
if update:
f = open(file, 'w')
f.write(contents)
f.close()
# #
# Read in and parse the ISA description. # Read in and parse the ISA description.
# #
def parse_isa_desc(isa_desc_file, decoder_file): def parse_isa_desc(isa_desc_file, output_dir, include_path):
# Arguments are the name of the ISA description (input) file and # set a global var for the input filename... used in error messages
# the name of the C++ decoder (output) file. global input_filename
global isa_desc_filename, decoder_filename input_filename = isa_desc_file
isa_desc_filename = isa_desc_file
decoder_filename = decoder_file
# Suck the ISA description file in. # Suck the ISA description file in.
input = open(isa_desc_filename) input = open(isa_desc_file)
isa_desc = input.read() isa_desc = input.read()
input.close() input.close()
# Parse it. # Parse it.
yacc.parse(isa_desc) (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
# grab the last three path components of isa_desc_file to put in
# the output
filename = '/'.join(isa_desc_file.split('/')[-3:])
# generate decoder.hh
includes = '#include "base/bitfield.hh" // for bitfield support'
global_output = global_code.header_output
namespace_output = namespace_code.header_output
update_if_needed(output_dir + '/decoder.hh', file_template % vars())
# generate decoder.cc
includes = '#include "%s/decoder.hh"' % include_path
global_output = global_code.decoder_output
namespace_output = namespace_code.decoder_output
namespace_output += namespace_code.decode_block
update_if_needed(output_dir + '/decoder.cc', file_template % vars())
# generate per-cpu exec files
for cpu in CpuModel.list:
includes = '#include "%s/decoder.hh"\n' % include_path
includes += cpu.includes
global_output = global_code.exec_output[cpu.name]
namespace_output = namespace_code.exec_output[cpu.name]
update_if_needed(output_dir + '/' + cpu.filename,
file_template % vars())
# Called as script: get args from command line. # Called as script: get args from command line.
if __name__ == '__main__': if __name__ == '__main__':
parse_isa_desc(sys.argv[1], sys.argv[2]) parse_isa_desc(sys.argv[1], sys.argv[2], sys.argv[3])

View file

@ -34,7 +34,7 @@
#include "base/loader/symtab.hh" #include "base/loader/symtab.hh"
#include "cpu/pc_event.hh" #include "cpu/pc_event.hh"
#include "base/statistics.hh" #include "base/statistics.hh"
#include "cpu/exec_context.hh"
// forward declarations // forward declarations
#ifdef FULL_SYSTEM #ifdef FULL_SYSTEM
@ -46,6 +46,11 @@ class PhysicalMemory;
class RemoteGDB; class RemoteGDB;
class GDBListener; class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM #endif // FULL_SYSTEM
class MemInterface; class MemInterface;
@ -305,6 +310,4 @@ class SimpleCPU : public BaseCPU
ExecContext *xcBase() { return xc; } ExecContext *xcBase() { return xc; }
}; };
typedef SimpleCPU SimpleCPUExecContext;
#endif // __SIMPLE_CPU_HH__ #endif // __SIMPLE_CPU_HH__

View file

@ -42,9 +42,7 @@
// forward declarations // forward declarations
class ExecContext; class ExecContext;
class DynInst; class DynInst;
typedef DynInst FullCPUExecContext;
class SimpleCPU; class SimpleCPU;
typedef SimpleCPU SimpleCPUExecContext;
class SymbolTable; class SymbolTable;
namespace Trace { namespace Trace {
@ -249,7 +247,8 @@ class StaticInst : public StaticInstBase
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the EA computation. * just the EA computation.
*/ */
virtual StaticInstPtr<ISA> eaCompInst() { return nullStaticInstPtr; } virtual const
StaticInstPtr<ISA> &eaCompInst() const { return nullStaticInstPtr; }
/** /**
* Memory references only: returns "fake" instruction representing * Memory references only: returns "fake" instruction representing
@ -257,7 +256,8 @@ class StaticInst : public StaticInstBase
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the memory access (not the EA computation). * just the memory access (not the EA computation).
*/ */
virtual StaticInstPtr<ISA> memAccInst() { return nullStaticInstPtr; } virtual const
StaticInstPtr<ISA> &memAccInst() const { return nullStaticInstPtr; }
/// The binary machine instruction. /// The binary machine instruction.
const MachInst machInst; const MachInst machInst;
@ -307,14 +307,12 @@ class StaticInst : public StaticInstBase
/** /**
* Execute this instruction under SimpleCPU model. * Execute this instruction under SimpleCPU model.
*/ */
virtual Fault execute(SimpleCPUExecContext *xc, virtual Fault execute(SimpleCPU *xc, Trace::InstRecord *traceData) = 0;
Trace::InstRecord *traceData) = 0;
/** /**
* Execute this instruction under detailed FullCPU model. * Execute this instruction under detailed FullCPU model.
*/ */
virtual Fault execute(FullCPUExecContext *xc, virtual Fault execute(DynInst *xc, Trace::InstRecord *traceData) = 0;
Trace::InstRecord *traceData) = 0;
/** /**
* Return the target address for a PC-relative branch. * Return the target address for a PC-relative branch.