Explicitly handle rounding on FP-to-integer conversions.

Seems to avoid the significant problems on platforms w/o fenv.h.

arch/alpha/isa_desc:
    Explicitly handle rounding on FP-to-integer conversions.
    Seems to avoid the significant problems on platforms w/o fenv.h.
    Get rid of FP "Fast" vs "General" distinction... more headache than
    it's worth.
arch/isa_parser.py:
    Fix bug with "%s" in C++ templates (must escape properly to
    pass through Python string interpolation).

--HG--
extra : convert_revision : de964d764e67e0934ac0ef535f53c974640731fb
This commit is contained in:
Steve Reinhardt 2005-09-11 19:29:41 -04:00
parent 845bdb0d8e
commit 11cb904ad7
2 changed files with 175 additions and 88 deletions

View file

@ -565,7 +565,7 @@ output header {{
* instructions that require this support are derived from this * instructions that require this support are derived from this
* class; the rest derive directly from AlphaStaticInst. * class; the rest derive directly from AlphaStaticInst.
*/ */
class AlphaFP : public AlphaStaticInst class AlphaFP : public AlphaStaticInst
{ {
public: public:
/// Alpha FP rounding modes. /// Alpha FP rounding modes.
@ -607,15 +607,22 @@ output header {{
/// This instruction's trapping mode. /// This instruction's trapping mode.
TrappingMode trappingMode; TrappingMode trappingMode;
/// Have we warned about this instruction's unsupported
/// rounding mode (if applicable)?
mutable bool warnedOnRounding;
/// Have we warned about this instruction's unsupported
/// trapping mode (if applicable)?
mutable bool warnedOnTrapping;
/// Constructor /// Constructor
AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass) AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass), : AlphaStaticInst(mnem, _machInst, __opClass),
roundingMode((enum RoundingMode)FP_ROUNDMODE), roundingMode((enum RoundingMode)FP_ROUNDMODE),
trappingMode((enum TrappingMode)FP_TRAPMODE) trappingMode((enum TrappingMode)FP_TRAPMODE),
warnedOnRounding(false),
warnedOnTrapping(false)
{ {
if (trappingMode != Imprecise) {
warn("precise FP traps unimplemented\n");
}
} }
int getC99RoundingMode(uint64_t fpcr_val) const; int getC99RoundingMode(uint64_t fpcr_val) const;
@ -629,22 +636,6 @@ output header {{
}}; }};
def template FloatingPointDecode {{
{
bool fast = (FP_TRAPMODE == AlphaFP::Imprecise
&& FP_ROUNDMODE == AlphaFP::Normal);
AlphaStaticInst *i =
fast ? (AlphaStaticInst *)new %(class_name)sFast(machInst) :
(AlphaStaticInst *)new %(class_name)sGeneral(machInst);
if (FC == 31) {
i = makeNop(i);
}
return i;
}
}};
output decoder {{ output decoder {{
int int
AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const
@ -715,6 +706,86 @@ output decoder {{
{ "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" }; { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
}}; }};
// FP instruction class execute method template. Handles non-standard
// rounding modes.
def template FloatingPointExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
if (trappingMode != Imprecise) {
warn("%s: non-standard trapping mode not supported",
generateDisassembly(0, NULL));
warnedOnTrapping = true;
}
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
#if USE_FENV
if (roundingMode == Normal) {
%(code)s;
} else {
fesetround(getC99RoundingMode(xc->readFpcr()));
%(code)s;
fesetround(FE_TONEAREST);
}
#else
if (roundingMode != Normal && !warnedOnRounding) {
warn("%s: non-standard rounding mode not supported",
generateDisassembly(0, NULL));
warnedOnRounding = true;
}
%(code)s;
#endif
if (fault == No_Fault) {
%(op_wb)s;
}
return fault;
}
}};
// FP instruction class execute method template where no dynamic
// rounding mode control is needed. Like BasicExecute, but includes
// check & warning for non-standard trapping mode.
def template FPFixedRoundingExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
if (trappingMode != Imprecise) {
warn("%s: non-standard trapping mode not supported",
generateDisassembly(0, NULL));
warnedOnTrapping = true;
}
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if (fault == No_Fault) {
%(op_wb)s;
}
return fault;
}
}};
def template FloatingPointDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (FC == 31) {
i = makeNop(i);
}
return i;
}
}};
// General format for floating-point operate instructions: // General format for floating-point operate instructions:
// - Checks trapping and rounding mode flags. Trapping modes // - Checks trapping and rounding mode flags. Trapping modes
// currently unimplemented (will fail). // currently unimplemented (will fail).
@ -722,28 +793,20 @@ output decoder {{
def format FloatingPointOperate(code, *opt_args) {{ def format FloatingPointOperate(code, *opt_args) {{
iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args) iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
decode_block = FloatingPointDecode.subst(iop) decode_block = FloatingPointDecode.subst(iop)
header_output = BasicDeclare.subst(iop)
fast_iop = InstObjParams(name, Name + 'Fast', 'AlphaFP', decoder_output = BasicConstructor.subst(iop)
CodeBlock(code), opt_args) exec_output = FloatingPointExecute.subst(iop)
header_output = BasicDeclare.subst(fast_iop)
decoder_output = BasicConstructor.subst(fast_iop)
exec_output = BasicExecute.subst(fast_iop)
gen_code_prefix = r'''
fesetround(getC99RoundingMode(xc->readFpcr()));
'''
gen_code_suffix = r'''
fesetround(FE_TONEAREST);
'''
gen_iop = InstObjParams(name, Name + 'General', 'AlphaFP',
CodeBlock(gen_code_prefix + code + gen_code_suffix), opt_args)
header_output += BasicDeclare.subst(gen_iop)
decoder_output += BasicConstructor.subst(gen_iop)
exec_output += BasicExecute.subst(gen_iop)
}}; }};
// Special format for cvttq where rounding mode is pre-decoded
def format FPFixedRounding(code, class_suffix, *opt_args) {{
Name += class_suffix
iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
decode_block = FloatingPointDecode.subst(iop)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = FPFixedRoundingExecute.subst(iop)
}};
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// //
@ -2193,30 +2256,30 @@ decode OPCODE default Unknown::unknown() {
0x1c: decode INTFUNC { 0x1c: decode INTFUNC {
0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
0x32: ctlz({{ 0x32: ctlz({{
uint64_t count = 0; uint64_t count = 0;
uint64_t temp = Rb; uint64_t temp = Rb;
if (temp<63:32>) temp >>= 32; else count += 32; if (temp<63:32>) temp >>= 32; else count += 32;
if (temp<31:16>) temp >>= 16; else count += 16; if (temp<31:16>) temp >>= 16; else count += 16;
if (temp<15:8>) temp >>= 8; else count += 8; if (temp<15:8>) temp >>= 8; else count += 8;
if (temp<7:4>) temp >>= 4; else count += 4; if (temp<7:4>) temp >>= 4; else count += 4;
if (temp<3:2>) temp >>= 2; else count += 2; if (temp<3:2>) temp >>= 2; else count += 2;
if (temp<1:1>) temp >>= 1; else count += 1; if (temp<1:1>) temp >>= 1; else count += 1;
if ((temp<0:0>) != 0x1) count += 1; if ((temp<0:0>) != 0x1) count += 1;
Rc = count; Rc = count;
}}, IntAluOp); }}, IntAluOp);
0x33: cttz({{ 0x33: cttz({{
uint64_t count = 0; uint64_t count = 0;
uint64_t temp = Rb; uint64_t temp = Rb;
if (!(temp<31:0>)) { temp >>= 32; count += 32; } if (!(temp<31:0>)) { temp >>= 32; count += 32; }
if (!(temp<15:0>)) { temp >>= 16; count += 16; } if (!(temp<15:0>)) { temp >>= 16; count += 16; }
if (!(temp<7:0>)) { temp >>= 8; count += 8; } if (!(temp<7:0>)) { temp >>= 8; count += 8; }
if (!(temp<3:0>)) { temp >>= 4; count += 4; } if (!(temp<3:0>)) { temp >>= 4; count += 4; }
if (!(temp<1:0>)) { temp >>= 2; count += 2; } if (!(temp<1:0>)) { temp >>= 2; count += 2; }
if (!(temp<0:0> & ULL(0x1))) count += 1; if (!(temp<0:0> & ULL(0x1))) count += 1;
Rc = count; Rc = count;
}}, IntAluOp); }}, IntAluOp);
format FailUnimpl { format FailUnimpl {
0x30: ctpop(); 0x30: ctpop();
@ -2282,7 +2345,7 @@ decode OPCODE default Unknown::unknown() {
} }
} }
// IEEE floating point // Square root and integer-to-FP moves
0x14: decode FP_SHORTFUNC { 0x14: decode FP_SHORTFUNC {
// Integer to FP register moves must have RB == 31 // Integer to FP register moves must have RB == 31
0x4: decode RB { 0x4: decode RB {
@ -2327,35 +2390,40 @@ decode OPCODE default Unknown::unknown() {
// IEEE floating point // IEEE floating point
0x16: decode FP_SHORTFUNC_TOP2 { 0x16: decode FP_SHORTFUNC_TOP2 {
// The top two bits of the short function code break this space // The top two bits of the short function code break this
// into four groups: binary ops, compares, reserved, and conversions. // space into four groups: binary ops, compares, reserved, and
// See Table 4-12 of AHB. // conversions. See Table 4-12 of AHB. There are different
// special cases in these different groups, so we decode on
// these top two bits first just to select a decode strategy.
// Most of these instructions may have various trapping and // Most of these instructions may have various trapping and
// rounding mode flags set; these are decoded in the // rounding mode flags set; these are decoded in the
// FloatingPointDecode template used by the // FloatingPointDecode template used by the
// FloatingPointOperate format. // FloatingPointOperate format.
// add/sub/mul/div: just decode on the short function code // add/sub/mul/div: just decode on the short function code
// and source type. // and source type. All valid trapping and rounding modes apply.
0: decode FP_TYPEFUNC { 0: decode FP_TRAPMODE {
format FloatingPointOperate { // check for valid trapping modes here
0,1,5,7: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP #if SS_COMPATIBLE_FP
0x00: adds({{ Fc = Fa + Fb; }}); 0x00: adds({{ Fc = Fa + Fb; }});
0x01: subs({{ Fc = Fa - Fb; }}); 0x01: subs({{ Fc = Fa - Fb; }});
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
#else #else
0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
#endif #endif
0x20: addt({{ Fc = Fa + Fb; }}); 0x20: addt({{ Fc = Fa + Fb; }});
0x21: subt({{ Fc = Fa - Fb; }}); 0x21: subt({{ Fc = Fa - Fb; }});
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
} }
}
} }
// Floating-point compare instructions must have the default // Floating-point compare instructions must have the default
@ -2384,7 +2452,17 @@ decode OPCODE default Unknown::unknown() {
3: decode FA { 3: decode FA {
31: decode FP_TYPEFUNC { 31: decode FP_TYPEFUNC {
format FloatingPointOperate { format FloatingPointOperate {
0x2f: cvttq({{ Fc.sq = (int64_t)rint(Fb); }}); 0x2f: decode FP_ROUNDMODE {
format FPFixedRounding {
// "chopped" i.e. round toward zero
0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
Chopped);
// round to minus infinity
1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
MinusInfinity);
}
default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
}
// The cvtts opcode is overloaded to be cvtst if the trap // The cvtts opcode is overloaded to be cvtst if the trap
// mode is 2 or 6 (which are not valid otherwise) // mode is 2 or 6 (which are not valid otherwise)

View file

@ -256,14 +256,19 @@ def p_def_or_output(t):
# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
# directly to the appropriate output section. # directly to the appropriate output section.
# Protect any non-dict-substitution '%'s in a format string
# (i.e. those not followed by '(')
def protect_non_subst_percents(s):
return re.sub(r'%(?!\()', '%%', s)
# Massage output block by substituting in template definitions and bit # Massage output block by substituting in template definitions and bit
# operators. We handle '%'s embedded in the string that don't # operators. We handle '%'s embedded in the string that don't
# indicate template substitutions (or CPU-specific symbols, which get # indicate template substitutions (or CPU-specific symbols, which get
# handled in GenCode) by doubling them first so that the format # handled in GenCode) by doubling them first so that the format
# operation will reduce them back to single '%'s. # operation will reduce them back to single '%'s.
def process_output(s): def process_output(s):
# protect any non-substitution '%'s (not followed by '(') s = protect_non_subst_percents(s)
s = re.sub(r'%(?!\()', '%%', s)
# protects cpu-specific symbols too # protects cpu-specific symbols too
s = protect_cpu_symbols(s) s = protect_cpu_symbols(s)
return substBitOps(s % templateMap) return substBitOps(s % templateMap)
@ -921,8 +926,12 @@ class Template:
myDict.update(d.__dict__) myDict.update(d.__dict__)
else: else:
raise TypeError, "Template.subst() arg must be or have dictionary" raise TypeError, "Template.subst() arg must be or have dictionary"
# Protect non-Python-dict substitutions (e.g. if there's a printf
# in the templated C++ code)
template = protect_non_subst_percents(self.template)
# CPU-model-specific substitutions are handled later (in GenCode). # CPU-model-specific substitutions are handled later (in GenCode).
return protect_cpu_symbols(self.template) % myDict template = protect_cpu_symbols(template)
return template % myDict
# Convert to string. This handles the case when a template with a # Convert to string. This handles the case when a template with a
# CPU-specific term gets interpolated into another template or into # CPU-specific term gets interpolated into another template or into