riscv: [Patch 2/5] Added RISC-V multiply extension RV64M

Second of five patches adding RISC-V to GEM5.  This patch adds the
RV64M extension, which includes integer multiply and divide instructions.

Patch 1 introduced RISC-V and implemented the base instruction set, RV64I.

Patch 3 will implement the floating point extensions, RV64FD; patch 4 will
implement the atomic memory instructions, RV64A; and patch 5 will add
support for timing, minor, and detailed CPU models that is missing from
the first four patches.

[Added mulw instruction that was missed when dividing changes among
patches.]
Signed-off by: Alec Roelke

Signed-off by: Jason Lowe-Power <jason@lowepower.com>
This commit is contained in:
Alec Roelke 2016-11-30 17:10:28 -05:00
parent e76bfc8764
commit 070da98493

View file

@ -150,6 +150,9 @@ decode OPCODE default Unknown::unknown() {
0x0: add({{ 0x0: add({{
Rd = Rs1_sd + Rs2_sd; Rd = Rs1_sd + Rs2_sd;
}}); }});
0x1: mul({{
Rd = Rs1_sd*Rs2_sd;
}}, IntMultOp);
0x20: sub({{ 0x20: sub({{
Rd = Rs1_sd - Rs2_sd; Rd = Rs1_sd - Rs2_sd;
}}); }});
@ -158,26 +161,93 @@ decode OPCODE default Unknown::unknown() {
0x0: sll({{ 0x0: sll({{
Rd = Rs1 << Rs2<5:0>; Rd = Rs1 << Rs2<5:0>;
}}); }});
0x1: mulh({{
bool negate = (Rs1_sd < 0) != (Rs2_sd < 0);
uint64_t Rs1_lo = (uint32_t)std::abs(Rs1_sd);
uint64_t Rs1_hi = (uint64_t)std::abs(Rs1_sd) >> 32;
uint64_t Rs2_lo = (uint32_t)std::abs(Rs2_sd);
uint64_t Rs2_hi = (uint64_t)std::abs(Rs2_sd) >> 32;
uint64_t hi = Rs1_hi*Rs2_hi;
uint64_t mid1 = Rs1_hi*Rs2_lo;
uint64_t mid2 = Rs1_lo*Rs2_hi;
uint64_t lo = Rs2_lo*Rs1_lo;
uint64_t carry = ((uint64_t)(uint32_t)mid1
+ (uint64_t)(uint32_t)mid2 + (lo >> 32)) >> 32;
uint64_t res = hi + (mid1 >> 32) + (mid2 >> 32) + carry;
Rd = negate ? ~res + (Rs1_sd*Rs2_sd == 0 ? 1 : 0) : res;
}}, IntMultOp);
} }
0x2: decode FUNCT7 { 0x2: decode FUNCT7 {
0x0: slt({{ 0x0: slt({{
Rd = (Rs1_sd < Rs2_sd) ? 1 : 0; Rd = (Rs1_sd < Rs2_sd) ? 1 : 0;
}}); }});
0x1: mulhsu({{
bool negate = Rs1_sd < 0;
uint64_t Rs1_lo = (uint32_t)std::abs(Rs1_sd);
uint64_t Rs1_hi = (uint64_t)std::abs(Rs1_sd) >> 32;
uint64_t Rs2_lo = (uint32_t)Rs2;
uint64_t Rs2_hi = Rs2 >> 32;
uint64_t hi = Rs1_hi*Rs2_hi;
uint64_t mid1 = Rs1_hi*Rs2_lo;
uint64_t mid2 = Rs1_lo*Rs2_hi;
uint64_t lo = Rs1_lo*Rs2_lo;
uint64_t carry = ((uint64_t)(uint32_t)mid1
+ (uint64_t)(uint32_t)mid2 + (lo >> 32)) >> 32;
uint64_t res = hi + (mid1 >> 32) + (mid2 >> 32) + carry;
Rd = negate ? ~res + (Rs1_sd*Rs2 == 0 ? 1 : 0) : res;
}}, IntMultOp);
} }
0x3: decode FUNCT7 { 0x3: decode FUNCT7 {
0x0: sltu({{ 0x0: sltu({{
Rd = (Rs1 < Rs2) ? 1 : 0; Rd = (Rs1 < Rs2) ? 1 : 0;
}}); }});
0x1: mulhu({{
uint64_t Rs1_lo = (uint32_t)Rs1;
uint64_t Rs1_hi = Rs1 >> 32;
uint64_t Rs2_lo = (uint32_t)Rs2;
uint64_t Rs2_hi = Rs2 >> 32;
uint64_t hi = Rs1_hi*Rs2_hi;
uint64_t mid1 = Rs1_hi*Rs2_lo;
uint64_t mid2 = Rs1_lo*Rs2_hi;
uint64_t lo = Rs1_lo*Rs2_lo;
uint64_t carry = ((uint64_t)(uint32_t)mid1
+ (uint64_t)(uint32_t)mid2 + (lo >> 32)) >> 32;
Rd = hi + (mid1 >> 32) + (mid2 >> 32) + carry;
}}, IntMultOp);
} }
0x4: decode FUNCT7 { 0x4: decode FUNCT7 {
0x0: xor({{ 0x0: xor({{
Rd = Rs1 ^ Rs2; Rd = Rs1 ^ Rs2;
}}); }});
0x1: div({{
if (Rs2_sd == 0) {
Rd_sd = -1;
} else if (Rs1_sd == std::numeric_limits<int64_t>::min()
&& Rs2_sd == -1) {
Rd_sd = std::numeric_limits<int64_t>::min();
} else {
Rd_sd = Rs1_sd/Rs2_sd;
}
}}, IntDivOp);
} }
0x5: decode FUNCT7 { 0x5: decode FUNCT7 {
0x0: srl({{ 0x0: srl({{
Rd = Rs1 >> Rs2<5:0>; Rd = Rs1 >> Rs2<5:0>;
}}); }});
0x1: divu({{
if (Rs2 == 0) {
Rd = std::numeric_limits<uint64_t>::max();
} else {
Rd = Rs1/Rs2;
}
}}, IntDivOp);
0x20: sra({{ 0x20: sra({{
Rd_sd = Rs1_sd >> Rs2<5:0>; Rd_sd = Rs1_sd >> Rs2<5:0>;
}}); }});
@ -186,11 +256,28 @@ decode OPCODE default Unknown::unknown() {
0x0: or({{ 0x0: or({{
Rd = Rs1 | Rs2; Rd = Rs1 | Rs2;
}}); }});
0x1: rem({{
if (Rs2_sd == 0) {
Rd = Rs1_sd;
} else if (Rs1_sd == std::numeric_limits<int64_t>::min()
&& Rs2_sd == -1) {
Rd = 0;
} else {
Rd = Rs1_sd%Rs2_sd;
}
}}, IntDivOp);
} }
0x7: decode FUNCT7 { 0x7: decode FUNCT7 {
0x0: and({{ 0x0: and({{
Rd = Rs1 & Rs2; Rd = Rs1 & Rs2;
}}); }});
0x1: remu({{
if (Rs2 == 0) {
Rd = Rs1;
} else {
Rd = Rs1%Rs2;
}
}}, IntDivOp);
} }
} }
} }
@ -205,6 +292,9 @@ decode OPCODE default Unknown::unknown() {
0x0: addw({{ 0x0: addw({{
Rd_sd = Rs1_sw + Rs2_sw; Rd_sd = Rs1_sw + Rs2_sw;
}}); }});
0x1: mulw({{
Rd_sd = (int32_t)(Rs1_sw*Rs2_sw);
}}, IntMultOp);
0x20: subw({{ 0x20: subw({{
Rd_sd = Rs1_sw - Rs2_sw; Rd_sd = Rs1_sw - Rs2_sw;
}}); }});
@ -212,14 +302,48 @@ decode OPCODE default Unknown::unknown() {
0x1: sllw({{ 0x1: sllw({{
Rd_sd = Rs1_sw << Rs2<4:0>; Rd_sd = Rs1_sw << Rs2<4:0>;
}}); }});
0x4: divw({{
if (Rs2_sw == 0) {
Rd_sd = -1;
} else if (Rs1_sw == std::numeric_limits<int32_t>::min()
&& Rs2_sw == -1) {
Rd_sd = std::numeric_limits<int32_t>::min();
} else {
Rd_sd = Rs1_sw/Rs2_sw;
}
}}, IntDivOp);
0x5: decode FUNCT7 { 0x5: decode FUNCT7 {
0x0: srlw({{ 0x0: srlw({{
Rd_uw = Rs1_uw >> Rs2<4:0>; Rd_uw = Rs1_uw >> Rs2<4:0>;
}}); }});
0x1: divuw({{
if (Rs2_uw == 0) {
Rd_sd = std::numeric_limits<IntReg>::max();
} else {
Rd_sd = (int32_t)(Rs1_uw/Rs2_uw);
}
}}, IntDivOp);
0x20: sraw({{ 0x20: sraw({{
Rd_sd = Rs1_sw >> Rs2<4:0>; Rd_sd = Rs1_sw >> Rs2<4:0>;
}}); }});
} }
0x6: remw({{
if (Rs2_sw == 0) {
Rd_sd = Rs1_sw;
} else if (Rs1_sw == std::numeric_limits<int32_t>::min()
&& Rs2_sw == -1) {
Rd_sd = 0;
} else {
Rd_sd = Rs1_sw%Rs2_sw;
}
}}, IntDivOp);
0x7: remuw({{
if (Rs2_uw == 0) {
Rd_sd = (int32_t)Rs1_uw;
} else {
Rd_sd = (int32_t)(Rs1_uw%Rs2_uw);
}
}}, IntDivOp);
} }
} }