cpu: Unify the serialization code for all of the CPU models

Cleanup the serialization code for the simple CPUs and the O3 CPU. The
CPU-specific code has been replaced with a (un)serializeThread that
serializes the thread state / context of a specific thread. Assuming
that the thread state class uses the CPU-specific thread state uses
the base thread state serialization code, this allows us to restore a
checkpoint with any of the CPU models.
This commit is contained in:
Andreas Sandberg 2013-01-07 13:05:52 -05:00
parent 5fb00e1df6
commit 009970f59b
8 changed files with 109 additions and 93 deletions

View file

@ -524,21 +524,36 @@ BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(instCnt);
/* Unlike _pid, _taskId is not serialized, as they are dynamically
* assigned unique ids that are only meaningful for the duration of
* a specific run. We will need to serialize the entire taskMap in
* system. */
SERIALIZE_SCALAR(_pid);
if (!_switchedOut) {
/* Unlike _pid, _taskId is not serialized, as they are dynamically
* assigned unique ids that are only meaningful for the duration of
* a specific run. We will need to serialize the entire taskMap in
* system. */
SERIALIZE_SCALAR(_pid);
interrupts->serialize(os);
interrupts->serialize(os);
// Serialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i) {
nameOut(os, csprintf("%s.xc.%i", name(), i));
serializeThread(os, i);
}
}
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(instCnt);
UNSERIALIZE_SCALAR(_pid);
interrupts->unserialize(cp, section);
if (!_switchedOut) {
UNSERIALIZE_SCALAR(_pid);
interrupts->unserialize(cp, section);
// Unserialize the threads, this is done by the CPU implementation.
for (ThreadID i = 0; i < numThreads; ++i)
unserializeThread(cp, csprintf("%s.xc.%i", section, i), i);
}
}
void

View file

@ -365,17 +365,47 @@ class BaseCPU : public MemObject
/**
* Serialize this object to the given output stream.
*
* @note CPU models should normally overload the serializeThread()
* method instead of the serialize() method as this provides a
* uniform data format for all CPU models and promotes better code
* reuse.
*
* @param os The stream to serialize to.
*/
virtual void serialize(std::ostream &os);
/**
* Reconstruct the state of this object from a checkpoint.
*
* @note CPU models should normally overload the
* unserializeThread() method instead of the unserialize() method
* as this provides a uniform data format for all CPU models and
* promotes better code reuse.
* @param cp The checkpoint use.
* @param section The section name of this object
* @param section The section name of this object.
*/
virtual void unserialize(Checkpoint *cp, const std::string &section);
/**
* Serialize a single thread.
*
* @param os The stream to serialize to.
* @param tid ID of the current thread.
*/
virtual void serializeThread(std::ostream &os, ThreadID tid) {};
/**
* Unserialize one thread.
*
* @param cp The checkpoint use.
* @param section The section name of this thread.
* @param tid ID of the current thread.
*/
virtual void unserializeThread(Checkpoint *cp, const std::string &section,
ThreadID tid) {};
/**
* Return pointer to CPU's branch predictor (NULL if none).
* @return Branch predictor pointer.

View file

@ -1094,35 +1094,17 @@ FullO3CPU<Impl>::syscall(int64_t callnum, ThreadID tid)
template <class Impl>
void
FullO3CPU<Impl>::serialize(std::ostream &os)
FullO3CPU<Impl>::serializeThread(std::ostream &os, ThreadID tid)
{
Drainable::State so_state(getDrainState());
SERIALIZE_ENUM(so_state);
BaseCPU::serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
for (ThreadID i = 0; i < thread.size(); i++) {
nameOut(os, csprintf("%s.xc.%i", name(), i));
thread[i]->serialize(os);
}
thread[tid]->serialize(os);
}
template <class Impl>
void
FullO3CPU<Impl>::unserialize(Checkpoint *cp, const std::string &section)
FullO3CPU<Impl>::unserializeThread(Checkpoint *cp, const std::string &section,
ThreadID tid)
{
Drainable::State so_state;
UNSERIALIZE_ENUM(so_state);
BaseCPU::unserialize(cp, section);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
for (ThreadID i = 0; i < thread.size(); i++) {
thread[i]->unserialize(cp,
csprintf("%s.xc.%i", section, i));
if (thread[i]->status() == ThreadContext::Active)
activateThread(i);
}
thread[tid]->unserialize(cp, section);
}
template <class Impl>

View file

@ -446,11 +446,10 @@ class FullO3CPU : public BaseO3CPU
/** Is the CPU draining? */
bool isDraining() const { return getDrainState() == Drainable::Draining; }
/** Serialize state. */
virtual void serialize(std::ostream &os);
void serializeThread(std::ostream &os, ThreadID tid);
/** Unserialize from a checkpoint. */
virtual void unserialize(Checkpoint *cp, const std::string &section);
void unserializeThread(Checkpoint *cp, const std::string &section,
ThreadID tid);
public:
/** Executes a syscall.

View file

@ -132,7 +132,7 @@ unsigned int
AtomicSimpleCPU::drain(DrainManager *dm)
{
assert(!drain_manager);
if (_status == SwitchedOut)
if (switchedOut())
return 0;
if (!isDrained()) {
@ -151,8 +151,9 @@ AtomicSimpleCPU::drain(DrainManager *dm)
void
AtomicSimpleCPU::drainResume()
{
assert(!tickEvent.scheduled());
assert(!drain_manager);
if (_status == Idle || _status == SwitchedOut)
if (switchedOut())
return;
DPRINTF(SimpleCPU, "Resume\n");
@ -161,9 +162,16 @@ AtomicSimpleCPU::drainResume()
"'atomic' mode.\n");
}
assert(!tickEvent.scheduled());
if (thread->status() == ThreadContext::Active)
assert(!threadContexts.empty());
if (threadContexts.size() > 1)
fatal("The atomic CPU only supports one thread.\n");
if (thread->status() == ThreadContext::Active) {
schedule(tickEvent, nextCycle());
_status = BaseSimpleCPU::Running;
} else {
_status = BaseSimpleCPU::Idle;
}
system->totalNumInsts = 0;
}
@ -194,8 +202,6 @@ AtomicSimpleCPU::switchOut()
assert(!tickEvent.scheduled());
assert(_status == BaseSimpleCPU::Running || _status == Idle);
assert(isDrained());
_status = SwitchedOut;
}
@ -207,16 +213,6 @@ AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
// The tick event should have been descheduled by drain()
assert(!tickEvent.scheduled());
assert(!threadContexts.empty());
if (threadContexts.size() > 1)
fatal("The atomic CPU only supports one thread.\n");
// If the ThreadContext is active, mark the CPU as running.
if (thread->status() == ThreadContext::Active)
_status = BaseSimpleCPU::Running;
else
_status = Idle;
ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2010-2011 ARM Limited
* Copyright (c) 2010-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
@ -283,22 +283,21 @@ BaseSimpleCPU::resetStats()
}
void
BaseSimpleCPU::serialize(ostream &os)
BaseSimpleCPU::serializeThread(ostream &os, ThreadID tid)
{
SERIALIZE_ENUM(_status);
BaseCPU::serialize(os);
// SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc.0", name()));
assert(_status == Idle || _status == Running);
assert(tid == 0);
thread->serialize(os);
}
void
BaseSimpleCPU::unserialize(Checkpoint *cp, const string &section)
BaseSimpleCPU::unserializeThread(Checkpoint *cp, const string &section,
ThreadID tid)
{
UNSERIALIZE_ENUM(_status);
BaseCPU::unserialize(cp, section);
// UNSERIALIZE_SCALAR(inst);
thread->unserialize(cp, csprintf("%s.xc.0", section));
if (tid != 0)
fatal("Trying to load more than one thread into a SimpleCPU\n");
thread->unserialize(cp, section);
}
void

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 ARM Limited
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
@ -137,7 +137,6 @@ class BaseSimpleCPU : public BaseCPU
DcacheRetry,
DcacheWaitResponse,
DcacheWaitSwitch,
SwitchedOut
};
Status _status;
@ -265,8 +264,9 @@ class BaseSimpleCPU : public BaseCPU
Stats::Scalar dcacheRetryCycles;
Counter lastDcacheRetry;
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
void serializeThread(std::ostream &os, ThreadID tid);
void unserializeThread(Checkpoint *cp, const std::string &section,
ThreadID tid);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.

View file

@ -109,9 +109,12 @@ TimingSimpleCPU::~TimingSimpleCPU()
unsigned int
TimingSimpleCPU::drain(DrainManager *drain_manager)
{
assert(!drainManager);
if (switchedOut())
return 0;
if (_status == Idle ||
(_status == BaseSimpleCPU::Running && isDrained()) ||
_status == SwitchedOut) {
(_status == BaseSimpleCPU::Running && isDrained())) {
assert(!fetchEvent.scheduled());
DPRINTF(Drain, "No need to drain.\n");
return 0;
@ -122,10 +125,8 @@ TimingSimpleCPU::drain(DrainManager *drain_manager)
// The fetch event can become descheduled if a drain didn't
// succeed on the first attempt. We need to reschedule it if
// the CPU is waiting for a microcode routine to complete.
if (_status == BaseSimpleCPU::Running && !isDrained() &&
!fetchEvent.scheduled()) {
if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
schedule(fetchEvent, nextCycle());
}
return 1;
}
@ -135,15 +136,25 @@ void
TimingSimpleCPU::drainResume()
{
assert(!fetchEvent.scheduled());
assert(!drainManager);
if (switchedOut())
return;
DPRINTF(SimpleCPU, "Resume\n");
if (_status != SwitchedOut && _status != Idle) {
if (system->getMemoryMode() != Enums::timing) {
fatal("The timing CPU requires the memory system to be in "
"'timing' mode.\n");
}
if (system->getMemoryMode() != Enums::timing) {
fatal("The timing CPU requires the memory system to be in "
"'timing' mode.\n");
}
assert(!threadContexts.empty());
if (threadContexts.size() > 1)
fatal("The timing CPU only supports one thread.\n");
if (thread->status() == ThreadContext::Active) {
schedule(fetchEvent, nextCycle());
_status = BaseSimpleCPU::Running;
} else {
_status = BaseSimpleCPU::Idle;
}
}
@ -174,7 +185,6 @@ TimingSimpleCPU::switchOut()
assert(!stayAtPC);
assert(microPC() == 0);
_status = SwitchedOut;
numCycles += curCycle() - previousCycle;
}
@ -184,21 +194,6 @@ TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseSimpleCPU::takeOverFrom(oldCPU);
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active &&
_status != BaseSimpleCPU::Running) {
_status = BaseSimpleCPU::Running;
break;
}
}
if (_status != BaseSimpleCPU::Running) {
_status = Idle;
}
assert(threadContexts.size() == 1);
previousCycle = curCycle();
}