2010-06-02 19:58:16 +02:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2010 ARM Limited
|
|
|
|
* All rights reserved
|
|
|
|
*
|
|
|
|
* The license below extends only to copyright in the software and shall
|
|
|
|
* not be construed as granting a license to any other intellectual
|
|
|
|
* property including but not limited to intellectual property relating
|
|
|
|
* to a hardware implementation of the functionality of the software
|
|
|
|
* licensed hereunder. You may use the software subject to the license
|
|
|
|
* terms below provided that you ensure that this notice is replicated
|
|
|
|
* unmodified and in its entirety in all distributions of the software,
|
|
|
|
* modified or unmodified, in source code or in binary form.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
* met: redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer;
|
|
|
|
* redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution;
|
|
|
|
* neither the name of the copyright holders nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Authors: Gabe Black
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "arch/arm/insts/vfp.hh"
|
|
|
|
|
2010-06-02 19:58:18 +02:00
|
|
|
/*
|
|
|
|
* The asm statements below are to keep gcc from reordering code. Otherwise
|
|
|
|
* the rounding mode might be set after the operation it was intended for, the
|
|
|
|
* exception bits read before it, etc.
|
|
|
|
*/
|
|
|
|
|
2010-06-02 19:58:16 +02:00
|
|
|
std::string
|
|
|
|
FpRegRegOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
|
|
|
|
{
|
|
|
|
std::stringstream ss;
|
|
|
|
printMnemonic(ss);
|
|
|
|
printReg(ss, dest + FP_Base_DepTag);
|
|
|
|
ss << ", ";
|
|
|
|
printReg(ss, op1 + FP_Base_DepTag);
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string
|
|
|
|
FpRegImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
|
|
|
|
{
|
|
|
|
std::stringstream ss;
|
|
|
|
printMnemonic(ss);
|
|
|
|
printReg(ss, dest + FP_Base_DepTag);
|
|
|
|
ccprintf(ss, ", #%d", imm);
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string
|
|
|
|
FpRegRegImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
|
|
|
|
{
|
|
|
|
std::stringstream ss;
|
|
|
|
printMnemonic(ss);
|
|
|
|
printReg(ss, dest + FP_Base_DepTag);
|
|
|
|
ss << ", ";
|
|
|
|
printReg(ss, op1 + FP_Base_DepTag);
|
|
|
|
ccprintf(ss, ", #%d", imm);
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string
|
|
|
|
FpRegRegRegOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
|
|
|
|
{
|
|
|
|
std::stringstream ss;
|
|
|
|
printMnemonic(ss);
|
|
|
|
printReg(ss, dest + FP_Base_DepTag);
|
|
|
|
ss << ", ";
|
|
|
|
printReg(ss, op1 + FP_Base_DepTag);
|
|
|
|
ss << ", ";
|
|
|
|
printReg(ss, op2 + FP_Base_DepTag);
|
|
|
|
return ss.str();
|
|
|
|
}
|
2010-06-02 19:58:18 +02:00
|
|
|
|
|
|
|
namespace ArmISA
|
|
|
|
{
|
|
|
|
|
|
|
|
VfpSavedState
|
|
|
|
prepFpState(uint32_t rMode)
|
|
|
|
{
|
|
|
|
int roundingMode = fegetround();
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
switch (rMode) {
|
|
|
|
case VfpRoundNearest:
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
break;
|
|
|
|
case VfpRoundUpward:
|
|
|
|
fesetround(FeRoundUpward);
|
|
|
|
break;
|
|
|
|
case VfpRoundDown:
|
|
|
|
fesetround(FeRoundDown);
|
|
|
|
break;
|
|
|
|
case VfpRoundZero:
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return roundingMode;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
finishVfp(FPSCR &fpscr, VfpSavedState state)
|
|
|
|
{
|
|
|
|
int exceptions = fetestexcept(FeAllExceptions);
|
|
|
|
bool underflow = false;
|
|
|
|
if (exceptions & FeInvalid) {
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
}
|
|
|
|
if (exceptions & FeDivByZero) {
|
|
|
|
fpscr.dzc = 1;
|
|
|
|
}
|
|
|
|
if (exceptions & FeOverflow) {
|
|
|
|
fpscr.ofc = 1;
|
|
|
|
}
|
|
|
|
if (exceptions & FeUnderflow) {
|
|
|
|
underflow = true;
|
|
|
|
fpscr.ufc = 1;
|
|
|
|
}
|
|
|
|
if ((exceptions & FeInexact) && !(underflow && fpscr.fz)) {
|
|
|
|
fpscr.ixc = 1;
|
|
|
|
}
|
|
|
|
fesetround(state);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class fpType>
|
|
|
|
fpType
|
|
|
|
fixDest(FPSCR fpscr, fpType val, fpType op1)
|
|
|
|
{
|
|
|
|
int fpClass = std::fpclassify(val);
|
|
|
|
fpType junk = 0.0;
|
|
|
|
if (fpClass == FP_NAN) {
|
|
|
|
const bool single = (sizeof(val) == sizeof(float));
|
|
|
|
const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
|
|
|
|
const bool nan = std::isnan(op1);
|
|
|
|
if (!nan || (fpscr.dn == 1)) {
|
|
|
|
val = bitsToFp(qnan, junk);
|
|
|
|
} else if (nan) {
|
|
|
|
val = bitsToFp(fpToBits(op1) | qnan, junk);
|
|
|
|
}
|
|
|
|
} else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
|
|
|
|
// Turn val into a zero with the correct sign;
|
|
|
|
uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
|
|
|
|
val = bitsToFp(fpToBits(val) & bitMask, junk);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
template
|
|
|
|
float fixDest<float>(FPSCR fpscr, float val, float op1);
|
|
|
|
template
|
|
|
|
double fixDest<double>(FPSCR fpscr, double val, double op1);
|
|
|
|
|
|
|
|
template <class fpType>
|
|
|
|
fpType
|
|
|
|
fixDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
|
|
|
|
{
|
|
|
|
int fpClass = std::fpclassify(val);
|
|
|
|
fpType junk = 0.0;
|
|
|
|
if (fpClass == FP_NAN) {
|
|
|
|
const bool single = (sizeof(val) == sizeof(float));
|
|
|
|
const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
|
|
|
|
const bool nan1 = std::isnan(op1);
|
|
|
|
const bool nan2 = std::isnan(op2);
|
|
|
|
const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
|
|
|
|
const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
|
|
|
|
if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
|
|
|
|
val = bitsToFp(qnan, junk);
|
|
|
|
} else if (signal1) {
|
|
|
|
val = bitsToFp(fpToBits(op1) | qnan, junk);
|
|
|
|
} else if (signal2) {
|
|
|
|
val = bitsToFp(fpToBits(op2) | qnan, junk);
|
|
|
|
} else if (nan1) {
|
|
|
|
val = op1;
|
|
|
|
} else if (nan2) {
|
|
|
|
val = op2;
|
|
|
|
}
|
|
|
|
} else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
|
|
|
|
// Turn val into a zero with the correct sign;
|
|
|
|
uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
|
|
|
|
val = bitsToFp(fpToBits(val) & bitMask, junk);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
template
|
|
|
|
float fixDest<float>(FPSCR fpscr, float val, float op1, float op2);
|
|
|
|
template
|
|
|
|
double fixDest<double>(FPSCR fpscr, double val, double op1, double op2);
|
|
|
|
|
|
|
|
template <class fpType>
|
|
|
|
fpType
|
|
|
|
fixDivDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
|
|
|
|
{
|
|
|
|
fpType mid = fixDest(fpscr, val, op1, op2);
|
|
|
|
const bool single = (sizeof(fpType) == sizeof(float));
|
|
|
|
const fpType junk = 0.0;
|
|
|
|
if ((single && (val == bitsToFp(0x00800000, junk) ||
|
|
|
|
val == bitsToFp(0x80800000, junk))) ||
|
|
|
|
(!single && (val == bitsToFp(ULL(0x0010000000000000), junk) ||
|
|
|
|
val == bitsToFp(ULL(0x8010000000000000), junk)))
|
|
|
|
) {
|
|
|
|
__asm__ __volatile__("" : "=m" (op1) : "m" (op1));
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
fpType temp = 0.0;
|
|
|
|
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
|
|
|
|
temp = op1 / op2;
|
|
|
|
if (flushToZero(temp)) {
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
if (fpscr.fz) {
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
mid = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__asm__ __volatile__("" :: "m" (temp));
|
|
|
|
}
|
|
|
|
return mid;
|
|
|
|
}
|
|
|
|
|
|
|
|
template
|
|
|
|
float fixDivDest<float>(FPSCR fpscr, float val, float op1, float op2);
|
|
|
|
template
|
|
|
|
double fixDivDest<double>(FPSCR fpscr, double val, double op1, double op2);
|
|
|
|
|
|
|
|
float
|
|
|
|
fixFpDFpSDest(FPSCR fpscr, double val)
|
|
|
|
{
|
|
|
|
const float junk = 0.0;
|
|
|
|
float op1 = 0.0;
|
|
|
|
if (std::isnan(val)) {
|
|
|
|
uint64_t valBits = fpToBits(val);
|
|
|
|
uint32_t op1Bits = bits(valBits, 50, 29) |
|
|
|
|
(mask(9) << 22) |
|
|
|
|
(bits(valBits, 63) << 31);
|
|
|
|
op1 = bitsToFp(op1Bits, junk);
|
|
|
|
}
|
|
|
|
float mid = fixDest(fpscr, (float)val, op1);
|
|
|
|
if (fpscr.fz && fetestexcept(FeUnderflow | FeInexact) ==
|
|
|
|
(FeUnderflow | FeInexact)) {
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
}
|
|
|
|
if (mid == bitsToFp(0x00800000, junk) ||
|
|
|
|
mid == bitsToFp(0x80800000, junk)) {
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
float temp = 0.0;
|
|
|
|
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
|
|
|
|
temp = val;
|
|
|
|
if (flushToZero(temp)) {
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
if (fpscr.fz) {
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
mid = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__asm__ __volatile__("" :: "m" (temp));
|
|
|
|
}
|
|
|
|
return mid;
|
|
|
|
}
|
|
|
|
|
|
|
|
double
|
|
|
|
fixFpSFpDDest(FPSCR fpscr, float val)
|
|
|
|
{
|
|
|
|
const double junk = 0.0;
|
|
|
|
double op1 = 0.0;
|
|
|
|
if (std::isnan(val)) {
|
|
|
|
uint32_t valBits = fpToBits(val);
|
|
|
|
uint64_t op1Bits = ((uint64_t)bits(valBits, 21, 0) << 29) |
|
|
|
|
(mask(12) << 51) |
|
|
|
|
((uint64_t)bits(valBits, 31) << 63);
|
|
|
|
op1 = bitsToFp(op1Bits, junk);
|
|
|
|
}
|
|
|
|
double mid = fixDest(fpscr, (double)val, op1);
|
|
|
|
if (mid == bitsToFp(ULL(0x0010000000000000), junk) ||
|
|
|
|
mid == bitsToFp(ULL(0x8010000000000000), junk)) {
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
double temp = 0.0;
|
|
|
|
__asm__ __volatile__("" : "=m" (temp) : "m" (temp));
|
|
|
|
temp = val;
|
|
|
|
if (flushToZero(temp)) {
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
if (fpscr.fz) {
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
mid = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__asm__ __volatile__("" :: "m" (temp));
|
|
|
|
}
|
|
|
|
return mid;
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
vcvtFpSFpH(FPSCR &fpscr, float op, float dest, bool top)
|
|
|
|
{
|
|
|
|
float junk = 0.0;
|
|
|
|
uint32_t destBits = fpToBits(dest);
|
|
|
|
uint32_t opBits = fpToBits(op);
|
|
|
|
// Extract the operand.
|
|
|
|
bool neg = bits(opBits, 31);
|
|
|
|
uint32_t exponent = bits(opBits, 30, 23);
|
|
|
|
uint32_t oldMantissa = bits(opBits, 22, 0);
|
|
|
|
uint32_t mantissa = oldMantissa >> (23 - 10);
|
|
|
|
// Do the conversion.
|
|
|
|
uint32_t extra = oldMantissa & mask(23 - 10);
|
|
|
|
if (exponent == 0xff) {
|
|
|
|
if (oldMantissa != 0) {
|
|
|
|
// Nans.
|
|
|
|
if (bits(mantissa, 9) == 0) {
|
|
|
|
// Signalling nan.
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
}
|
|
|
|
if (fpscr.ahp) {
|
|
|
|
mantissa = 0;
|
|
|
|
exponent = 0;
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
} else if (fpscr.dn) {
|
|
|
|
mantissa = (1 << 9);
|
|
|
|
exponent = 0x1f;
|
|
|
|
neg = false;
|
|
|
|
} else {
|
|
|
|
exponent = 0x1f;
|
|
|
|
mantissa |= (1 << 9);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Infinities.
|
|
|
|
exponent = 0x1F;
|
|
|
|
if (fpscr.ahp) {
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
mantissa = 0x3ff;
|
|
|
|
} else {
|
|
|
|
mantissa = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (exponent == 0 && oldMantissa == 0) {
|
|
|
|
// Zero, don't need to do anything.
|
|
|
|
} else {
|
|
|
|
// Normalized or denormalized numbers.
|
|
|
|
|
|
|
|
bool inexact = (extra != 0);
|
|
|
|
|
|
|
|
if (exponent == 0) {
|
|
|
|
// Denormalized.
|
|
|
|
|
|
|
|
// If flush to zero is on, this shouldn't happen.
|
|
|
|
assert(fpscr.fz == 0);
|
|
|
|
|
|
|
|
// Check for underflow
|
|
|
|
if (inexact || fpscr.ufe)
|
|
|
|
fpscr.ufc = 1;
|
|
|
|
|
|
|
|
// Handle rounding.
|
|
|
|
unsigned mode = fpscr.rMode;
|
|
|
|
if ((mode == VfpRoundUpward && !neg && extra) ||
|
|
|
|
(mode == VfpRoundDown && neg && extra) ||
|
|
|
|
(mode == VfpRoundNearest &&
|
|
|
|
(extra > (1 << 9) ||
|
|
|
|
(extra == (1 << 9) && bits(mantissa, 0))))) {
|
|
|
|
mantissa++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// See if the number became normalized after rounding.
|
|
|
|
if (mantissa == (1 << 10)) {
|
|
|
|
mantissa = 0;
|
|
|
|
exponent = 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Normalized.
|
|
|
|
|
|
|
|
// We need to track the dropped bits differently since
|
|
|
|
// more can be dropped by denormalizing.
|
|
|
|
bool topOne = bits(extra, 12);
|
|
|
|
bool restZeros = bits(extra, 11, 0) == 0;
|
|
|
|
|
|
|
|
if (exponent <= (127 - 15)) {
|
|
|
|
// The result is too small. Denormalize.
|
|
|
|
mantissa |= (1 << 10);
|
|
|
|
while (mantissa && exponent <= (127 - 15)) {
|
|
|
|
restZeros = restZeros && !topOne;
|
|
|
|
topOne = bits(mantissa, 0);
|
|
|
|
mantissa = mantissa >> 1;
|
|
|
|
exponent++;
|
|
|
|
}
|
|
|
|
if (topOne || !restZeros)
|
|
|
|
inexact = true;
|
|
|
|
exponent = 0;
|
|
|
|
} else {
|
|
|
|
// Change bias.
|
|
|
|
exponent -= (127 - 15);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent == 0 && (inexact || fpscr.ufe)) {
|
|
|
|
// Underflow
|
|
|
|
fpscr.ufc = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle rounding.
|
|
|
|
unsigned mode = fpscr.rMode;
|
|
|
|
bool nonZero = topOne || !restZeros;
|
|
|
|
if ((mode == VfpRoundUpward && !neg && nonZero) ||
|
|
|
|
(mode == VfpRoundDown && neg && nonZero) ||
|
|
|
|
(mode == VfpRoundNearest && topOne &&
|
|
|
|
(!restZeros || bits(mantissa, 0)))) {
|
|
|
|
mantissa++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// See if we rounded up and need to bump the exponent.
|
|
|
|
if (mantissa == (1 << 10)) {
|
|
|
|
mantissa = 0;
|
|
|
|
exponent++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Deal with overflow
|
|
|
|
if (fpscr.ahp) {
|
|
|
|
if (exponent >= 0x20) {
|
|
|
|
exponent = 0x1f;
|
|
|
|
mantissa = 0x3ff;
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
// Supress inexact exception.
|
|
|
|
inexact = false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (exponent >= 0x1f) {
|
|
|
|
if ((mode == VfpRoundNearest) ||
|
|
|
|
(mode == VfpRoundUpward && !neg) ||
|
|
|
|
(mode == VfpRoundDown && neg)) {
|
|
|
|
// Overflow to infinity.
|
|
|
|
exponent = 0x1f;
|
|
|
|
mantissa = 0;
|
|
|
|
} else {
|
|
|
|
// Overflow to max normal.
|
|
|
|
exponent = 0x1e;
|
|
|
|
mantissa = 0x3ff;
|
|
|
|
}
|
|
|
|
fpscr.ofc = 1;
|
|
|
|
inexact = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (inexact) {
|
|
|
|
fpscr.ixc = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Reassemble and install the result.
|
|
|
|
uint32_t result = bits(mantissa, 9, 0);
|
|
|
|
replaceBits(result, 14, 10, exponent);
|
|
|
|
if (neg)
|
|
|
|
result |= (1 << 15);
|
|
|
|
if (top)
|
|
|
|
replaceBits(destBits, 31, 16, result);
|
|
|
|
else
|
|
|
|
replaceBits(destBits, 15, 0, result);
|
|
|
|
return bitsToFp(destBits, junk);
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
vcvtFpHFpS(FPSCR &fpscr, float op, bool top)
|
|
|
|
{
|
|
|
|
float junk = 0.0;
|
|
|
|
uint32_t opBits = fpToBits(op);
|
|
|
|
// Extract the operand.
|
|
|
|
if (top)
|
|
|
|
opBits = bits(opBits, 31, 16);
|
|
|
|
else
|
|
|
|
opBits = bits(opBits, 15, 0);
|
|
|
|
// Extract the bitfields.
|
|
|
|
bool neg = bits(opBits, 15);
|
|
|
|
uint32_t exponent = bits(opBits, 14, 10);
|
|
|
|
uint32_t mantissa = bits(opBits, 9, 0);
|
|
|
|
// Do the conversion.
|
|
|
|
if (exponent == 0) {
|
|
|
|
if (mantissa != 0) {
|
|
|
|
// Normalize the value.
|
|
|
|
exponent = exponent + (127 - 15) + 1;
|
|
|
|
while (mantissa < (1 << 10)) {
|
|
|
|
mantissa = mantissa << 1;
|
|
|
|
exponent--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mantissa = mantissa << (23 - 10);
|
|
|
|
} else if (exponent == 0x1f && !fpscr.ahp) {
|
|
|
|
// Infinities and nans.
|
|
|
|
exponent = 0xff;
|
|
|
|
if (mantissa != 0) {
|
|
|
|
// Nans.
|
|
|
|
mantissa = mantissa << (23 - 10);
|
|
|
|
if (bits(mantissa, 22) == 0) {
|
|
|
|
// Signalling nan.
|
|
|
|
fpscr.ioc = 1;
|
|
|
|
mantissa |= (1 << 22);
|
|
|
|
}
|
|
|
|
if (fpscr.dn) {
|
|
|
|
mantissa &= ~mask(22);
|
|
|
|
neg = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
exponent = exponent + (127 - 15);
|
|
|
|
mantissa = mantissa << (23 - 10);
|
|
|
|
}
|
|
|
|
// Reassemble the result.
|
|
|
|
uint32_t result = bits(mantissa, 22, 0);
|
|
|
|
replaceBits(result, 30, 23, exponent);
|
|
|
|
if (neg)
|
|
|
|
result |= (1 << 31);
|
|
|
|
return bitsToFp(result, junk);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
vfpFpSToFixed(float val, bool isSigned, bool half,
|
|
|
|
uint8_t imm, bool rzero)
|
|
|
|
{
|
|
|
|
int rmode = rzero ? FeRoundZero : fegetround();
|
|
|
|
__asm__ __volatile__("" : "=m" (rmode) : "m" (rmode));
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
val = val * powf(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
fesetround(rmode);
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
float origVal = val;
|
|
|
|
val = rintf(val);
|
|
|
|
int fpType = std::fpclassify(val);
|
|
|
|
if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
|
|
|
|
if (fpType == FP_NAN) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
}
|
|
|
|
val = 0.0;
|
|
|
|
} else if (origVal != val) {
|
|
|
|
switch (rmode) {
|
|
|
|
case FeRoundNearest:
|
|
|
|
if (origVal - val > 0.5)
|
|
|
|
val += 1.0;
|
|
|
|
else if (val - origVal > 0.5)
|
|
|
|
val -= 1.0;
|
|
|
|
break;
|
|
|
|
case FeRoundDown:
|
|
|
|
if (origVal < val)
|
|
|
|
val -= 1.0;
|
|
|
|
break;
|
|
|
|
case FeRoundUpward:
|
|
|
|
if (origVal > val)
|
|
|
|
val += 1.0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
feraiseexcept(FeInexact);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isSigned) {
|
|
|
|
if (half) {
|
|
|
|
if ((double)val < (int16_t)(1 << 15)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int16_t)(1 << 15);
|
|
|
|
}
|
|
|
|
if ((double)val > (int16_t)mask(15)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int16_t)mask(15);
|
|
|
|
}
|
|
|
|
return (int16_t)val;
|
|
|
|
} else {
|
|
|
|
if ((double)val < (int32_t)(1 << 31)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int32_t)(1 << 31);
|
|
|
|
}
|
|
|
|
if ((double)val > (int32_t)mask(31)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int32_t)mask(31);
|
|
|
|
}
|
|
|
|
return (int32_t)val;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (half) {
|
|
|
|
if ((double)val < 0) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if ((double)val > (mask(16))) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return mask(16);
|
|
|
|
}
|
|
|
|
return (uint16_t)val;
|
|
|
|
} else {
|
|
|
|
if ((double)val < 0) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if ((double)val > (mask(32))) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return mask(32);
|
|
|
|
}
|
|
|
|
return (uint32_t)val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
vfpUFixedToFpS(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
|
|
|
|
{
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
if (half)
|
|
|
|
val = (uint16_t)val;
|
|
|
|
float scale = powf(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
return fixDivDest(fpscr, val / scale, (float)val, scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
vfpSFixedToFpS(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
|
|
|
|
{
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
if (half)
|
|
|
|
val = sext<16>(val & mask(16));
|
|
|
|
float scale = powf(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
return fixDivDest(fpscr, val / scale, (float)val, scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
vfpFpDToFixed(double val, bool isSigned, bool half,
|
|
|
|
uint8_t imm, bool rzero)
|
|
|
|
{
|
|
|
|
int rmode = rzero ? FeRoundZero : fegetround();
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
val = val * pow(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
fesetround(rmode);
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (val) : "m" (val));
|
|
|
|
double origVal = val;
|
|
|
|
val = rint(val);
|
|
|
|
int fpType = std::fpclassify(val);
|
|
|
|
if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
|
|
|
|
if (fpType == FP_NAN) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
}
|
|
|
|
val = 0.0;
|
|
|
|
} else if (origVal != val) {
|
|
|
|
switch (rmode) {
|
|
|
|
case FeRoundNearest:
|
|
|
|
if (origVal - val > 0.5)
|
|
|
|
val += 1.0;
|
|
|
|
else if (val - origVal > 0.5)
|
|
|
|
val -= 1.0;
|
|
|
|
break;
|
|
|
|
case FeRoundDown:
|
|
|
|
if (origVal < val)
|
|
|
|
val -= 1.0;
|
|
|
|
break;
|
|
|
|
case FeRoundUpward:
|
|
|
|
if (origVal > val)
|
|
|
|
val += 1.0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
feraiseexcept(FeInexact);
|
|
|
|
}
|
|
|
|
if (isSigned) {
|
|
|
|
if (half) {
|
|
|
|
if (val < (int16_t)(1 << 15)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int16_t)(1 << 15);
|
|
|
|
}
|
|
|
|
if (val > (int16_t)mask(15)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int16_t)mask(15);
|
|
|
|
}
|
|
|
|
return (int16_t)val;
|
|
|
|
} else {
|
|
|
|
if (val < (int32_t)(1 << 31)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int32_t)(1 << 31);
|
|
|
|
}
|
|
|
|
if (val > (int32_t)mask(31)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return (int32_t)mask(31);
|
|
|
|
}
|
|
|
|
return (int32_t)val;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (half) {
|
|
|
|
if (val < 0) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (val > mask(16)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return mask(16);
|
|
|
|
}
|
|
|
|
return (uint16_t)val;
|
|
|
|
} else {
|
|
|
|
if (val < 0) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (val > mask(32)) {
|
|
|
|
feraiseexcept(FeInvalid);
|
|
|
|
feclearexcept(FeInexact);
|
|
|
|
return mask(32);
|
|
|
|
}
|
|
|
|
return (uint32_t)val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double
|
|
|
|
vfpUFixedToFpD(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
|
|
|
|
{
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
if (half)
|
|
|
|
val = (uint16_t)val;
|
|
|
|
double scale = pow(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
return fixDivDest(fpscr, val / scale, (double)val, scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
double
|
|
|
|
vfpSFixedToFpD(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
|
|
|
|
{
|
|
|
|
fesetround(FeRoundNearest);
|
|
|
|
if (half)
|
|
|
|
val = sext<16>(val & mask(16));
|
|
|
|
double scale = pow(2.0, imm);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
feclearexcept(FeAllExceptions);
|
|
|
|
__asm__ __volatile__("" : "=m" (scale) : "m" (scale));
|
|
|
|
return fixDivDest(fpscr, val / scale, (double)val, scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class fpType>
|
|
|
|
fpType
|
|
|
|
FpOp::binaryOp(FPSCR &fpscr, fpType op1, fpType op2,
|
|
|
|
fpType (*func)(fpType, fpType),
|
|
|
|
bool flush, uint32_t rMode) const
|
|
|
|
{
|
|
|
|
const bool single = (sizeof(fpType) == sizeof(float));
|
|
|
|
fpType junk = 0.0;
|
|
|
|
|
|
|
|
if (flush && flushToZero(op1, op2))
|
|
|
|
fpscr.idc = 1;
|
|
|
|
VfpSavedState state = prepFpState(rMode);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (op1), "=m" (op2), "=m" (state)
|
|
|
|
: "m" (op1), "m" (op2), "m" (state));
|
|
|
|
fpType dest = func(op1, op2);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
|
|
|
|
|
|
|
|
int fpClass = std::fpclassify(dest);
|
|
|
|
// Get NAN behavior right. This varies between x86 and ARM.
|
|
|
|
if (fpClass == FP_NAN) {
|
|
|
|
const bool single = (sizeof(fpType) == sizeof(float));
|
|
|
|
const uint64_t qnan =
|
|
|
|
single ? 0x7fc00000 : ULL(0x7ff8000000000000);
|
|
|
|
const bool nan1 = std::isnan(op1);
|
|
|
|
const bool nan2 = std::isnan(op2);
|
|
|
|
const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
|
|
|
|
const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
|
|
|
|
if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
|
|
|
|
dest = bitsToFp(qnan, junk);
|
|
|
|
} else if (signal1) {
|
|
|
|
dest = bitsToFp(fpToBits(op1) | qnan, junk);
|
|
|
|
} else if (signal2) {
|
|
|
|
dest = bitsToFp(fpToBits(op2) | qnan, junk);
|
|
|
|
} else if (nan1) {
|
|
|
|
dest = op1;
|
|
|
|
} else if (nan2) {
|
|
|
|
dest = op2;
|
|
|
|
}
|
|
|
|
} else if (flush && flushToZero(dest)) {
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
} else if ((
|
|
|
|
(single && (dest == bitsToFp(0x00800000, junk) ||
|
|
|
|
dest == bitsToFp(0x80800000, junk))) ||
|
|
|
|
(!single &&
|
|
|
|
(dest == bitsToFp(ULL(0x0010000000000000), junk) ||
|
|
|
|
dest == bitsToFp(ULL(0x8010000000000000), junk)))
|
|
|
|
) && rMode != VfpRoundZero) {
|
|
|
|
/*
|
|
|
|
* Correct for the fact that underflow is detected -before- rounding
|
|
|
|
* in ARM and -after- rounding in x86.
|
|
|
|
*/
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (op1), "=m" (op2)
|
|
|
|
: "m" (op1), "m" (op2));
|
|
|
|
fpType temp = func(op1, op2);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
|
|
|
|
if (flush && flushToZero(temp)) {
|
|
|
|
dest = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
finishVfp(fpscr, state);
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
template
|
|
|
|
float FpOp::binaryOp(FPSCR &fpscr, float op1, float op2,
|
|
|
|
float (*func)(float, float),
|
|
|
|
bool flush, uint32_t rMode) const;
|
|
|
|
template
|
|
|
|
double FpOp::binaryOp(FPSCR &fpscr, double op1, double op2,
|
|
|
|
double (*func)(double, double),
|
|
|
|
bool flush, uint32_t rMode) const;
|
|
|
|
|
|
|
|
template <class fpType>
|
|
|
|
fpType
|
|
|
|
FpOp::unaryOp(FPSCR &fpscr, fpType op1, fpType (*func)(fpType),
|
|
|
|
bool flush, uint32_t rMode) const
|
|
|
|
{
|
|
|
|
const bool single = (sizeof(fpType) == sizeof(float));
|
|
|
|
fpType junk = 0.0;
|
|
|
|
|
|
|
|
if (flush && flushToZero(op1))
|
|
|
|
fpscr.idc = 1;
|
|
|
|
VfpSavedState state = prepFpState(rMode);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (op1), "=m" (state)
|
|
|
|
: "m" (op1), "m" (state));
|
|
|
|
fpType dest = func(op1);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
|
|
|
|
|
|
|
|
int fpClass = std::fpclassify(dest);
|
|
|
|
// Get NAN behavior right. This varies between x86 and ARM.
|
|
|
|
if (fpClass == FP_NAN) {
|
|
|
|
const bool single = (sizeof(fpType) == sizeof(float));
|
|
|
|
const uint64_t qnan =
|
|
|
|
single ? 0x7fc00000 : ULL(0x7ff8000000000000);
|
|
|
|
const bool nan = std::isnan(op1);
|
|
|
|
if (!nan || fpscr.dn == 1) {
|
|
|
|
dest = bitsToFp(qnan, junk);
|
|
|
|
} else if (nan) {
|
|
|
|
dest = bitsToFp(fpToBits(op1) | qnan, junk);
|
|
|
|
}
|
|
|
|
} else if (flush && flushToZero(dest)) {
|
|
|
|
feraiseexcept(FeUnderflow);
|
|
|
|
} else if ((
|
|
|
|
(single && (dest == bitsToFp(0x00800000, junk) ||
|
|
|
|
dest == bitsToFp(0x80800000, junk))) ||
|
|
|
|
(!single &&
|
|
|
|
(dest == bitsToFp(ULL(0x0010000000000000), junk) ||
|
|
|
|
dest == bitsToFp(ULL(0x8010000000000000), junk)))
|
|
|
|
) && rMode != VfpRoundZero) {
|
|
|
|
/*
|
|
|
|
* Correct for the fact that underflow is detected -before- rounding
|
|
|
|
* in ARM and -after- rounding in x86.
|
|
|
|
*/
|
|
|
|
fesetround(FeRoundZero);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (op1) : "m" (op1));
|
|
|
|
fpType temp = func(op1);
|
|
|
|
__asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
|
|
|
|
if (flush && flushToZero(temp)) {
|
|
|
|
dest = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
finishVfp(fpscr, state);
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
|
|
|
template
|
|
|
|
float FpOp::unaryOp(FPSCR &fpscr, float op1, float (*func)(float),
|
|
|
|
bool flush, uint32_t rMode) const;
|
|
|
|
template
|
|
|
|
double FpOp::unaryOp(FPSCR &fpscr, double op1, double (*func)(double),
|
|
|
|
bool flush, uint32_t rMode) const;
|
|
|
|
|
|
|
|
IntRegIndex
|
|
|
|
VfpMacroOp::addStride(IntRegIndex idx, unsigned stride)
|
|
|
|
{
|
|
|
|
if (wide) {
|
|
|
|
stride *= 2;
|
|
|
|
}
|
|
|
|
unsigned offset = idx % 8;
|
|
|
|
idx = (IntRegIndex)(idx - offset);
|
|
|
|
offset += stride;
|
|
|
|
idx = (IntRegIndex)(idx + (offset % 8));
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
VfpMacroOp::nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
|
|
|
|
{
|
|
|
|
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
|
|
|
|
assert(!inScalarBank(dest));
|
|
|
|
dest = addStride(dest, stride);
|
|
|
|
op1 = addStride(op1, stride);
|
|
|
|
if (!inScalarBank(op2)) {
|
|
|
|
op2 = addStride(op2, stride);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
VfpMacroOp::nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
|
|
|
|
{
|
|
|
|
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
|
|
|
|
assert(!inScalarBank(dest));
|
|
|
|
dest = addStride(dest, stride);
|
|
|
|
if (!inScalarBank(op1)) {
|
|
|
|
op1 = addStride(op1, stride);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
VfpMacroOp::nextIdxs(IntRegIndex &dest)
|
|
|
|
{
|
|
|
|
unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
|
|
|
|
assert(!inScalarBank(dest));
|
|
|
|
dest = addStride(dest, stride);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|