gem5/src/arch/micro_asm.py

505 lines
14 KiB
Python
Raw Normal View History

# Copyright (c) 2003-2005 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Gabe Black
import os
import sys
import re
import string
import traceback
# get type names
from types import *
# Prepend the directory where the PLY lex & yacc modules are found
# to the search path.
sys.path[0:0] = [os.environ['M5_PLY']]
from ply import lex
from ply import yacc
##########################################################################
#
# Base classes for use outside of the assembler
#
##########################################################################
class Micro_Container(object):
def __init__(self, name):
self.microops = []
self.name = name
self.directives = {}
self.micro_classes = {}
self.labels = {}
def add_microop(self, mnemonic, microop):
self.microops.append(microop)
def __str__(self):
string = "%s:\n" % self.name
for microop in self.microops:
string += " %s\n" % microop
return string
class Combinational_Macroop(Micro_Container):
pass
class Rom_Macroop(object):
def __init__(self, name, target):
self.name = name
self.target = target
def __str__(self):
return "%s: %s\n" % (self.name, self.target)
class Rom(Micro_Container):
def __init__(self, name):
super(Rom, self).__init__(name)
self.externs = {}
##########################################################################
#
# Support classes
#
##########################################################################
class Label(object):
def __init__(self):
self.extern = False
self.name = ""
class Block(object):
def __init__(self):
self.statements = []
class Statement(object):
def __init__(self):
self.is_microop = False
self.is_directive = False
self.params = ""
class Microop(Statement):
def __init__(self):
super(Microop, self).__init__()
self.mnemonic = ""
self.labels = []
self.is_microop = True
class Directive(Statement):
def __init__(self):
super(Directive, self).__init__()
self.name = ""
self.is_directive = True
##########################################################################
#
# Functions that handle common tasks
#
##########################################################################
def print_error(message):
print
print "*** %s" % message
print
def handle_statement(parser, container, statement):
if statement.is_microop:
if statement.mnemonic not in parser.microops.keys():
raise Exception, "Unrecognized mnemonic: %s" % statement.mnemonic
parser.symbols["__microopClassFromInsideTheAssembler"] = \
parser.microops[statement.mnemonic]
try:
microop = eval('__microopClassFromInsideTheAssembler(%s)' %
statement.params, {}, parser.symbols)
except:
print_error("Error creating microop object with mnemonic %s." % \
statement.mnemonic)
raise
try:
for label in statement.labels:
container.labels[label.text] = microop
if label.is_extern:
container.externs[label.text] = microop
container.add_microop(statement.mnemonic, microop)
except:
print_error("Error adding microop.")
raise
elif statement.is_directive:
if statement.name not in container.directives.keys():
raise Exception, "Unrecognized directive: %s" % statement.name
parser.symbols["__directiveFunctionFromInsideTheAssembler"] = \
container.directives[statement.name]
try:
eval('__directiveFunctionFromInsideTheAssembler(%s)' %
statement.params, {}, parser.symbols)
except:
print_error("Error executing directive.")
print container.directives
raise
else:
raise Exception, "Didn't recognize the type of statement", statement
##########################################################################
#
# Lexer specification
#
##########################################################################
# Error handler. Just call exit. Output formatted to work under
# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
# prints a Python stack backtrace too (can be handy when trying to
# debug the parser itself).
def error(lineno, string, print_traceback = False):
# Print a Python stack backtrace if requested.
if (print_traceback):
traceback.print_exc()
if lineno != 0:
line_str = "%d:" % lineno
else:
line_str = ""
sys.exit("%s %s" % (line_str, string))
reserved = ('DEF', 'MACROOP', 'ROM', 'EXTERN')
tokens = reserved + (
# identifier
'ID',
# arguments for microops and directives
'PARAMS',
'LPAREN', 'RPAREN',
'LBRACE', 'RBRACE',
'COLON', 'SEMI', 'DOT',
'NEWLINE'
)
# New lines are ignored at the top level, but they end statements in the
# assembler
states = (
('asm', 'exclusive'),
('params', 'exclusive'),
)
reserved_map = { }
for r in reserved:
reserved_map[r.lower()] = r
# Ignore comments
def t_ANY_COMMENT(t):
r'\#[^\n]*(?=\n)'
def t_ANY_MULTILINECOMMENT(t):
r'/\*([^/]|((?<!\*)/))*\*/'
# A colon marks the end of a label. It should follow an ID which will
# put the lexer in the "params" state. Seeing the colon will put it back
# in the "asm" state since it knows it saw a label and not a mnemonic.
def t_params_COLON(t):
r':'
t.lexer.begin('asm')
return t
# Parameters are a string of text which don't contain an unescaped statement
# statement terminator, ie a newline or semi colon.
def t_params_PARAMS(t):
r'([^\n;\\]|(\\[\n;\\]))+'
t.lineno += t.value.count('\n')
unescapeParamsRE = re.compile(r'(\\[\n;\\])')
def unescapeParams(mo):
val = mo.group(0)
return val[1]
t.value = unescapeParamsRE.sub(unescapeParams, t.value)
t.lexer.begin('asm')
return t
# An "ID" in the micro assembler is either a label, directive, or mnemonic
# If it's either a directive or a mnemonic, it will be optionally followed by
# parameters. If it's a label, the following colon will make the lexer stop
# looking for parameters.
def t_asm_ID(t):
r'[A-Za-z_]\w*'
t.type = reserved_map.get(t.value, 'ID')
# If the ID is really "extern", we shouldn't start looking for parameters
# yet. The real ID, the label itself, is coming up.
if t.type != 'EXTERN':
t.lexer.begin('params')
return t
# If there is a label and you're -not- in the assembler (which would be caught
# above), don't start looking for parameters.
def t_ANY_ID(t):
r'[A-Za-z_]\w*'
t.type = reserved_map.get(t.value, 'ID')
return t
# Braces enter and exit micro assembly
def t_INITIAL_LBRACE(t):
r'\{'
t.lexer.begin('asm')
return t
def t_asm_RBRACE(t):
r'\}'
t.lexer.begin('INITIAL')
return t
# At the top level, keep track of newlines only for line counting.
def t_INITIAL_NEWLINE(t):
r'\n+'
t.lineno += t.value.count('\n')
# In the micro assembler, do line counting but also return a token. The
# token is needed by the parser to detect the end of a statement.
def t_asm_NEWLINE(t):
r'\n+'
t.lineno += t.value.count('\n')
return t
# A newline or semi colon when looking for params signals that the statement
# is over and the lexer should go back to looking for regular assembly.
def t_params_NEWLINE(t):
r'\n+'
t.lineno += t.value.count('\n')
t.lexer.begin('asm')
return t
def t_params_SEMI(t):
r';'
t.lexer.begin('asm')
return t
# Basic regular expressions to pick out simple tokens
t_ANY_LPAREN = r'\('
t_ANY_RPAREN = r'\)'
t_ANY_SEMI = r';'
t_ANY_DOT = r'\.'
t_ANY_ignore = ' \t\x0c'
def t_ANY_error(t):
error(t.lineno, "illegal character '%s'" % t.value[0])
t.skip(1)
##########################################################################
#
# Parser specification
#
##########################################################################
# Start symbol for a file which may have more than one macroop or rom
# specification.
def p_file(t):
'file : opt_rom_or_macros'
def p_opt_rom_or_macros_0(t):
'opt_rom_or_macros : '
def p_opt_rom_or_macros_1(t):
'opt_rom_or_macros : rom_or_macros'
def p_rom_or_macros_0(t):
'rom_or_macros : rom_or_macro'
def p_rom_or_macros_1(t):
'rom_or_macros : rom_or_macros rom_or_macro'
def p_rom_or_macro_0(t):
'''rom_or_macro : rom_block
| macroop_def'''
# Defines a section of microcode that should go in the current ROM
def p_rom_block(t):
'rom_block : DEF ROM block SEMI'
if not t.parser.rom:
print_error("Rom block found, but no Rom object specified.")
raise TypeError, "Rom block found, but no Rom object was specified."
for statement in t[3].statements:
handle_statement(t.parser, t.parser.rom, statement)
t[0] = t.parser.rom
# Defines a macroop that jumps to an external label in the ROM
def p_macroop_def_0(t):
'macroop_def : DEF MACROOP ID LPAREN ID RPAREN SEMI'
if not t.parser.rom_macroop_type:
print_error("ROM based macroop found, but no ROM macroop class was specified.")
raise TypeError, "ROM based macroop found, but no ROM macroop class was specified."
macroop = t.parser.rom_macroop_type(t[3], t[5])
t.parser.macroops[t[3]] = macroop
# Defines a macroop that is combinationally generated
def p_macroop_def_1(t):
'macroop_def : DEF MACROOP ID block SEMI'
try:
curop = t.parser.macro_type(t[3])
except TypeError:
print_error("Error creating macroop object.")
raise
for statement in t[4].statements:
handle_statement(t.parser, curop, statement)
t.parser.macroops[t[3]] = curop
# A block of statements
def p_block(t):
'block : LBRACE statements RBRACE'
block = Block()
block.statements = t[2]
t[0] = block
def p_statements_0(t):
'statements : statement'
if t[1]:
t[0] = [t[1]]
else:
t[0] = []
def p_statements_1(t):
'statements : statements statement'
if t[2]:
t[1].append(t[2])
t[0] = t[1]
def p_statement(t):
'statement : content_of_statement end_of_statement'
t[0] = t[1]
# A statement can be a microop or an assembler directive
def p_content_of_statement_0(t):
'''content_of_statement : microop
| directive'''
t[0] = t[1]
# Ignore empty statements
def p_content_of_statement_1(t):
'content_of_statement : '
pass
# Statements are ended by newlines or a semi colon
def p_end_of_statement(t):
'''end_of_statement : NEWLINE
| SEMI'''
pass
# Different flavors of microop to avoid shift/reduce errors
def p_microop_0(t):
'microop : labels ID'
microop = Microop()
microop.labels = t[1]
microop.mnemonic = t[2]
t[0] = microop
def p_microop_1(t):
'microop : ID'
microop = Microop()
microop.mnemonic = t[1]
t[0] = microop
def p_microop_2(t):
'microop : labels ID PARAMS'
microop = Microop()
microop.labels = t[1]
microop.mnemonic = t[2]
microop.params = t[3]
t[0] = microop
def p_microop_3(t):
'microop : ID PARAMS'
microop = Microop()
microop.mnemonic = t[1]
microop.params = t[2]
t[0] = microop
# Labels in the microcode
def p_labels_0(t):
'labels : label'
t[0] = [t[1]]
def p_labels_1(t):
'labels : labels label'
t[1].append(t[2])
t[0] = t[1]
# labels on lines by themselves are attached to the following instruction.
def p_labels_2(t):
'labels : labels NEWLINE'
t[0] = t[1]
def p_label_0(t):
'label : ID COLON'
label = Label()
label.is_extern = False
label.text = t[1]
t[0] = label
def p_label_1(t):
'label : EXTERN ID COLON'
label = Label()
label.is_extern = True
label.text = t[2]
t[0] = label
# Directives for the macroop
def p_directive_0(t):
'directive : DOT ID'
directive = Directive()
directive.name = t[2]
t[0] = directive
def p_directive_1(t):
'directive : DOT ID PARAMS'
directive = Directive()
directive.name = t[2]
directive.params = t[3]
t[0] = directive
# Parse error handler. Note that the argument here is the offending
# *token*, not a grammar symbol (hence the need to use t.value)
def p_error(t):
if t:
error(t.lineno, "syntax error at '%s'" % t.value)
else:
error(0, "unknown syntax error", True)
class MicroAssembler(object):
def __init__(self, macro_type, microops,
rom = None, rom_macroop_type = None):
self.lexer = lex.lex()
self.parser = yacc.yacc()
self.parser.macro_type = macro_type
self.parser.macroops = {}
self.parser.microops = microops
self.parser.rom = rom
self.parser.rom_macroop_type = rom_macroop_type
self.parser.symbols = {}
self.symbols = self.parser.symbols
def assemble(self, asm):
self.parser.parse(asm, lexer=self.lexer)
macroops = self.parser.macroops
self.parser.macroops = {}
return macroops