gem5/src/mem/ruby/slicc_interface/RubySlicc_ComponentMapping.hh

426 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*/
#ifndef COMPONENTMAPPINGFNS_H
#define COMPONENTMAPPINGFNS_H
#include "Global.hh"
#include "RubyConfig.hh"
#include "NodeID.hh"
#include "MachineID.hh"
#include "Address.hh"
#include "Set.hh"
#include "NetDest.hh"
#include "GenericMachineType.hh"
#ifdef MACHINETYPE_L1Cache
#define MACHINETYPE_L1CACHE_ENUM MachineType_L1Cache
#else
#define MACHINETYPE_L1CACHE_ENUM MachineType_NUM
#endif
#ifdef MACHINETYPE_L2Cache
#define MACHINETYPE_L2CACHE_ENUM MachineType_L2Cache
#else
#define MACHINETYPE_L2CACHE_ENUM MachineType_NUM
#endif
#ifdef MACHINETYPE_L3Cache
#define MACHINETYPE_L3CACHE_ENUM MachineType_L3Cache
#else
#define MACHINETYPE_L3CACHE_ENUM MachineType_NUM
#endif
#ifdef MACHINETYPE_PersistentArbiter
#define MACHINETYPE_PERSISTENTARBITER_ENUM MachineType_PersistentArbiter
#else
#define MACHINETYPE_PERSISTENTARBITER_ENUM MachineType_NUM
#endif
#ifdef MACHINETYPE_Collector
#define MACHINETYPE_COLLECTOR_ENUM MachineType_Collector
#else
#define MACHINETYPE_COLLECTOR_ENUM MachineType_NUM
#endif
// used to determine the correct L1 set
// input parameters are the address and number of set bits for the L1 cache
// returns a value between 0 and the total number of L1 cache sets
inline
int map_address_to_L1CacheSet(const Address& addr, int cache_num_set_bits)
{
return addr.bitSelect(RubyConfig::dataBlockBits(),
RubyConfig::dataBlockBits()+cache_num_set_bits-1);
}
// used to determine the correct L2 set
// input parameters are the address and number of set bits for the L2 cache
// returns a value between 0 and the total number of L2 cache sets
inline
int map_address_to_L2CacheSet(const Address& addr, int cache_num_set_bits)
{
assert(cache_num_set_bits == L2_CACHE_NUM_SETS_BITS); // ensure the l2 bank mapping functions agree with l2 set bits
if (MAP_L2BANKS_TO_LOWEST_BITS) {
return addr.bitSelect(RubyConfig::dataBlockBits()+RubyConfig::L2CachePerChipBits(),
RubyConfig::dataBlockBits()+RubyConfig::L2CachePerChipBits()+cache_num_set_bits-1);
} else {
return addr.bitSelect(RubyConfig::dataBlockBits(),
RubyConfig::dataBlockBits()+cache_num_set_bits-1);
}
}
// input parameter is the base ruby node of the L1 cache
// returns a value between 0 and total_L2_Caches_within_the_system
inline
MachineID map_L1CacheMachId_to_L2Cache(const Address& addr, MachineID L1CacheMachId)
{
int L2bank = 0;
MachineID mach = {MACHINETYPE_L2CACHE_ENUM, 0};
if (RubyConfig::L2CachePerChipBits() > 0) {
if (MAP_L2BANKS_TO_LOWEST_BITS) {
L2bank = addr.bitSelect(RubyConfig::dataBlockBits(),
RubyConfig::dataBlockBits()+RubyConfig::L2CachePerChipBits()-1);
} else {
L2bank = addr.bitSelect(RubyConfig::dataBlockBits()+L2_CACHE_NUM_SETS_BITS,
RubyConfig::dataBlockBits()+L2_CACHE_NUM_SETS_BITS+RubyConfig::L2CachePerChipBits()-1);
}
}
assert(L2bank < RubyConfig::numberOfL2CachePerChip());
assert(L2bank >= 0);
mach.num = RubyConfig::L1CacheNumToL2Base(L1CacheMachId.num)*RubyConfig::numberOfL2CachePerChip() // base #
+ L2bank; // bank #
assert(mach.num < RubyConfig::numberOfL2Cache());
return mach;
}
// used to determine the correct L2 bank
// input parameter is the base ruby node of the L2 cache
// returns a value between 0 and total_L2_Caches_within_the_system
inline
MachineID map_L2ChipId_to_L2Cache(const Address& addr, NodeID L2ChipId)
{
assert(L2ChipId < RubyConfig::numberOfChips());
int L2bank = 0;
MachineID mach = {MACHINETYPE_L2CACHE_ENUM, 0};
if (RubyConfig::L2CachePerChipBits() > 0) {
if (MAP_L2BANKS_TO_LOWEST_BITS) {
L2bank = addr.bitSelect(RubyConfig::dataBlockBits(),
RubyConfig::dataBlockBits()+RubyConfig::L2CachePerChipBits()-1);
} else {
L2bank = addr.bitSelect(RubyConfig::dataBlockBits()+L2_CACHE_NUM_SETS_BITS,
RubyConfig::dataBlockBits()+L2_CACHE_NUM_SETS_BITS+RubyConfig::L2CachePerChipBits()-1);
}
}
assert(L2bank < RubyConfig::numberOfL2CachePerChip());
assert(L2bank >= 0);
mach.num = L2ChipId*RubyConfig::numberOfL2CachePerChip() // base #
+ L2bank; // bank #
assert(mach.num < RubyConfig::numberOfL2Cache());
return mach;
}
// used to determine the home directory
// returns a value between 0 and total_directories_within_the_system
inline
NodeID map_Address_to_DirectoryNode(const Address& addr)
{
NodeID dirNode = 0;
if (RubyConfig::memoryBits() > 0) {
dirNode = addr.bitSelect(RubyConfig::dataBlockBits(),
RubyConfig::dataBlockBits()+RubyConfig::memoryBits()-1);
}
// Index indexHighPortion = address.bitSelect(MEMORY_SIZE_BITS-1, PAGE_SIZE_BITS+NUMBER_OF_MEMORY_MODULE_BITS);
// Index indexLowPortion = address.bitSelect(DATA_BLOCK_BITS, PAGE_SIZE_BITS-1);
//Index index = indexLowPortion | (indexHighPortion << (PAGE_SIZE_BITS - DATA_BLOCK_BITS));
/*
ADDRESS_WIDTH MEMORY_SIZE_BITS PAGE_SIZE_BITS DATA_BLOCK_BITS
| | | |
\ / \ / \ / \ / 0
-----------------------------------------------------------------------
| unused |xxxxxxxxxxxxxxx| |xxxxxxxxxxxxxxx| |
| |xxxxxxxxxxxxxxx| |xxxxxxxxxxxxxxx| |
-----------------------------------------------------------------------
indexHighPortion indexLowPortion
<------->
NUMBER_OF_MEMORY_MODULE_BITS
*/
assert(dirNode < RubyConfig::numberOfMemories());
assert(dirNode >= 0);
return dirNode;
}
// used to determine the home directory
// returns a value between 0 and total_directories_within_the_system
inline
MachineID map_Address_to_Directory(const Address &addr)
{
MachineID mach = {MachineType_Directory, map_Address_to_DirectoryNode(addr)};
return mach;
}
inline
MachineID map_Address_to_CentralArbiterNode(const Address& addr)
{
MachineType t = MACHINETYPE_PERSISTENTARBITER_ENUM;
MachineID mach = {t, map_Address_to_DirectoryNode(addr)};
assert(mach.num < RubyConfig::numberOfMemories());
assert(mach.num >= 0);
return mach;
}
inline
NetDest getMultiStaticL2BankNetDest(const Address& addr, const Set& sharers) // set of L2RubyNodes
{
NetDest dest;
for (int i = 0; i < sharers.getSize(); i++) {
if (sharers.isElement(i)) {
dest.add(map_L2ChipId_to_L2Cache(addr,i));
}
}
return dest;
}
inline
NetDest getOtherLocalL1IDs(MachineID L1)
{
int start = (L1.num / RubyConfig::numberOfProcsPerChip()) * RubyConfig::numberOfProcsPerChip();
NetDest ret;
assert(MACHINETYPE_L1CACHE_ENUM != MachineType_NUM);
for (int i = start; i < (start + RubyConfig::numberOfProcsPerChip()); i++) {
if (i != L1.num) {
MachineID mach = { MACHINETYPE_L1CACHE_ENUM, i };
ret.add( mach );
}
}
return ret;
}
inline
NetDest getLocalL1IDs(MachineID mach)
{
assert(MACHINETYPE_L1CACHE_ENUM != MachineType_NUM);
NetDest ret;
if (mach.type == MACHINETYPE_L1CACHE_ENUM) {
int start = (mach.num / RubyConfig::numberOfL1CachePerChip()) * RubyConfig::numberOfProcsPerChip();
for (int i = start; i < (start + RubyConfig::numberOfProcsPerChip()); i++) {
MachineID mach = { MACHINETYPE_L1CACHE_ENUM, i };
ret.add( mach );
}
}
else if (mach.type == MACHINETYPE_L2CACHE_ENUM) {
int chip = mach.num/RubyConfig::numberOfL2CachePerChip();
int start = ( chip*RubyConfig::numberOfL1CachePerChip());
for (int i = start; i < (start + RubyConfig::numberOfL1CachePerChip()); i++) {
MachineID mach = { MACHINETYPE_L1CACHE_ENUM, i };
ret.add( mach );
}
}
return ret;
}
inline
NetDest getExternalL1IDs(MachineID L1)
{
NetDest ret;
assert(MACHINETYPE_L1CACHE_ENUM != MachineType_NUM);
for (int i = 0; i < RubyConfig::numberOfProcessors(); i++) {
// ret.add( (NodeID) i);
MachineID mach = { MACHINETYPE_L1CACHE_ENUM, i };
ret.add( mach );
}
ret.removeNetDest(getLocalL1IDs(L1));
return ret;
}
inline
bool isLocalProcessor(MachineID thisId, MachineID tarID)
{
int start = (thisId.num / RubyConfig::numberOfProcsPerChip()) * RubyConfig::numberOfProcsPerChip();
for (int i = start; i < (start + RubyConfig::numberOfProcsPerChip()); i++) {
if (i == tarID.num) {
return true;
}
}
return false;
}
inline
NetDest getAllPertinentL2Banks(const Address& addr) // set of L2RubyNodes
{
NetDest dest;
for (int i = 0; i < RubyConfig::numberOfChips(); i++) {
dest.add(map_L2ChipId_to_L2Cache(addr,i));
}
return dest;
}
inline
bool isL1OnChip(MachineID L1machID, NodeID L2NodeID)
{
if (L1machID.type == MACHINETYPE_L1CACHE_ENUM) {
return (L1machID.num == L2NodeID);
} else {
return false;
}
}
inline
bool isL2OnChip(MachineID L2machID, NodeID L2NodeID)
{
if (L2machID.type == MACHINETYPE_L2CACHE_ENUM) {
return (L2machID.num == L2NodeID);
} else {
return false;
}
}
inline
NodeID closest_clockwise_distance(NodeID this_node, NodeID next_node)
{
if (this_node <= next_node) {
return (next_node - this_node);
} else {
return (next_node - this_node + RubyConfig::numberOfChips());
}
}
inline
bool closer_clockwise_processor(NodeID this_node, NodeID newer, NodeID older)
{
return (closest_clockwise_distance(this_node, newer) < closest_clockwise_distance(this_node, older));
}
extern inline NodeID getChipID(MachineID L2machID)
{
return (L2machID.num%RubyConfig::numberOfChips())/RubyConfig::numberOfProcsPerChip();
}
extern inline NodeID machineIDToNodeID(MachineID machID)
{
// return machID.num%RubyConfig::numberOfChips();
return machID.num;
}
extern inline NodeID machineIDToVersion(MachineID machID)
{
return machID.num/RubyConfig::numberOfChips();
}
extern inline MachineType machineIDToMachineType(MachineID machID)
{
return machID.type;
}
extern inline NodeID L1CacheMachIDToProcessorNum(MachineID machID)
{
assert(machID.type == MachineType_L1Cache);
return machID.num;
}
extern inline NodeID L2CacheMachIDToChipID(MachineID machID)
{
assert(machID.type == MACHINETYPE_L2CACHE_ENUM);
return machID.num/RubyConfig::numberOfL2CachePerChip();
}
extern inline MachineID getCollectorDest(MachineID L1MachID)
{
MachineID mach = {MACHINETYPE_COLLECTOR_ENUM, L1MachID.num};
return mach;
}
extern inline MachineID getCollectorL1Cache(MachineID colID)
{
MachineID mach = {MACHINETYPE_L1CACHE_ENUM, colID.num};
return mach;
}
extern inline MachineID getL1MachineID(NodeID L1RubyNode)
{
MachineID mach = {MACHINETYPE_L1CACHE_ENUM, L1RubyNode};
return mach;
}
extern inline GenericMachineType ConvertMachToGenericMach(MachineType machType) {
if (machType == MACHINETYPE_L1CACHE_ENUM) {
return GenericMachineType_L1Cache;
} else if (machType == MACHINETYPE_L2CACHE_ENUM) {
return GenericMachineType_L2Cache;
} else if (machType == MACHINETYPE_L3CACHE_ENUM) {
return GenericMachineType_L3Cache;
} else if (machType == MachineType_Directory) {
return GenericMachineType_Directory;
} else if (machType == MACHINETYPE_COLLECTOR_ENUM) {
return GenericMachineType_Collector;
} else {
ERROR_MSG("cannot convert to a GenericMachineType");
return GenericMachineType_NULL;
}
}
#endif // COMPONENTMAPPINGFNS_H