364 lines
11 KiB
C++
364 lines
11 KiB
C++
|
|
||
|
/*
|
||
|
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are
|
||
|
* met: redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer;
|
||
|
* redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution;
|
||
|
* neither the name of the copyright holders nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* $Id$
|
||
|
*/
|
||
|
|
||
|
#include "MessageBuffer.hh"
|
||
|
#include "RubyConfig.hh"
|
||
|
|
||
|
MessageBuffer::MessageBuffer()
|
||
|
{
|
||
|
m_msg_counter = 0;
|
||
|
m_consumer_ptr = NULL;
|
||
|
m_ordering_set = false;
|
||
|
m_strict_fifo = true;
|
||
|
m_size = 0;
|
||
|
m_max_size = -1;
|
||
|
m_last_arrival_time = 0;
|
||
|
m_randomization = true;
|
||
|
m_size_last_time_size_checked = 0;
|
||
|
m_time_last_time_size_checked = 0;
|
||
|
m_time_last_time_enqueue = 0;
|
||
|
m_time_last_time_pop = 0;
|
||
|
m_size_at_cycle_start = 0;
|
||
|
m_msgs_this_cycle = 0;
|
||
|
m_not_avail_count = 0;
|
||
|
m_priority_rank = 0;
|
||
|
}
|
||
|
|
||
|
MessageBuffer::MessageBuffer(const Chip* chip_ptr) // The chip_ptr is ignored, but could be used for extra debugging
|
||
|
{
|
||
|
m_msg_counter = 0;
|
||
|
m_consumer_ptr = NULL;
|
||
|
m_ordering_set = false;
|
||
|
m_strict_fifo = true;
|
||
|
m_size = 0;
|
||
|
m_max_size = -1;
|
||
|
m_last_arrival_time = 0;
|
||
|
m_randomization = true;
|
||
|
m_size_last_time_size_checked = 0;
|
||
|
m_time_last_time_size_checked = 0;
|
||
|
m_time_last_time_enqueue = 0;
|
||
|
m_time_last_time_pop = 0;
|
||
|
m_size_at_cycle_start = 0;
|
||
|
m_msgs_this_cycle = 0;
|
||
|
m_not_avail_count = 0;
|
||
|
m_priority_rank = 0;
|
||
|
}
|
||
|
|
||
|
int MessageBuffer::getSize()
|
||
|
{
|
||
|
if(m_time_last_time_size_checked == g_eventQueue_ptr->getTime()){
|
||
|
return m_size_last_time_size_checked;
|
||
|
} else {
|
||
|
m_time_last_time_size_checked = g_eventQueue_ptr->getTime();
|
||
|
m_size_last_time_size_checked = m_size;
|
||
|
return m_size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool MessageBuffer::areNSlotsAvailable(int n)
|
||
|
{
|
||
|
|
||
|
// fast path when message buffers have infinite size
|
||
|
if(m_max_size == -1) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// determine my correct size for the current cycle
|
||
|
// pop operations shouldn't effect the network's visible size until next cycle,
|
||
|
// but enqueue operations effect the visible size immediately
|
||
|
int current_size = max(m_size_at_cycle_start, m_size);
|
||
|
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { // no pops this cycle - m_size is correct
|
||
|
current_size = m_size;
|
||
|
} else {
|
||
|
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { // no enqueues this cycle - m_size_at_cycle_start is correct
|
||
|
current_size = m_size_at_cycle_start;
|
||
|
} else { // both pops and enqueues occured this cycle - add new enqueued msgs to m_size_at_cycle_start
|
||
|
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// now compare the new size with our max size
|
||
|
if(current_size+n <= m_max_size){
|
||
|
return true;
|
||
|
} else {
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,n);
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,current_size);
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,m_size);
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,m_max_size);
|
||
|
m_not_avail_count++;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const MsgPtr MessageBuffer::getMsgPtrCopy() const
|
||
|
{
|
||
|
assert(isReady());
|
||
|
|
||
|
MsgPtr temp_msg;
|
||
|
temp_msg = *(m_prio_heap.peekMin().m_msgptr.ref());
|
||
|
assert(temp_msg.ref() != NULL);
|
||
|
return temp_msg;
|
||
|
}
|
||
|
|
||
|
const Message* MessageBuffer::peekAtHeadOfQueue() const
|
||
|
{
|
||
|
const Message* msg_ptr;
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,MedPrio);
|
||
|
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,"Peeking at head of queue " + m_name + " time: "
|
||
|
+ int_to_string(g_eventQueue_ptr->getTime()) + ".");
|
||
|
assert(isReady());
|
||
|
|
||
|
msg_ptr = m_prio_heap.peekMin().m_msgptr.ref();
|
||
|
assert(msg_ptr != NULL);
|
||
|
|
||
|
DEBUG_EXPR(QUEUE_COMP,MedPrio,*msg_ptr);
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,MedPrio);
|
||
|
return msg_ptr;
|
||
|
}
|
||
|
|
||
|
// FIXME - move me somewhere else
|
||
|
int random_time()
|
||
|
{
|
||
|
int time = 1;
|
||
|
time += random() & 0x3; // [0...3]
|
||
|
if ((random() & 0x7) == 0) { // 1 in 8 chance
|
||
|
time += 100 + (random() % 0xf); // 100 + [1...15]
|
||
|
}
|
||
|
return time;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::enqueue(const MsgPtr& message, Time delta)
|
||
|
{
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
|
||
|
DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name + " time: "
|
||
|
+ int_to_string(g_eventQueue_ptr->getTime()) + ".");
|
||
|
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
|
||
|
|
||
|
m_msg_counter++;
|
||
|
m_size++;
|
||
|
|
||
|
// record current time incase we have a pop that also adjusts my size
|
||
|
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) {
|
||
|
m_msgs_this_cycle = 0; // first msg this cycle
|
||
|
m_time_last_time_enqueue = g_eventQueue_ptr->getTime();
|
||
|
}
|
||
|
m_msgs_this_cycle++;
|
||
|
|
||
|
// ASSERT(m_max_size == -1 || m_size <= m_max_size + 1);
|
||
|
// the plus one is a kluge because of a SLICC issue
|
||
|
|
||
|
if (!m_ordering_set) {
|
||
|
WARN_EXPR(*this);
|
||
|
WARN_EXPR(m_name);
|
||
|
ERROR_MSG("Ordering property of this queue has not been set");
|
||
|
}
|
||
|
|
||
|
// Calculate the arrival time of the message, that is, the first
|
||
|
// cycle the message can be dequeued.
|
||
|
assert(delta>0);
|
||
|
Time current_time = g_eventQueue_ptr->getTime();
|
||
|
Time arrival_time = 0;
|
||
|
if (!RANDOMIZATION || (m_randomization == false)) {
|
||
|
// No randomization
|
||
|
arrival_time = current_time + delta;
|
||
|
|
||
|
} else {
|
||
|
// Randomization - ignore delta
|
||
|
if (m_strict_fifo) {
|
||
|
if (m_last_arrival_time < current_time) {
|
||
|
m_last_arrival_time = current_time;
|
||
|
}
|
||
|
arrival_time = m_last_arrival_time + random_time();
|
||
|
} else {
|
||
|
arrival_time = current_time + random_time();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check the arrival time
|
||
|
assert(arrival_time > current_time);
|
||
|
if (m_strict_fifo) {
|
||
|
if (arrival_time >= m_last_arrival_time) {
|
||
|
|
||
|
} else {
|
||
|
WARN_EXPR(*this);
|
||
|
WARN_EXPR(m_name);
|
||
|
WARN_EXPR(current_time);
|
||
|
WARN_EXPR(delta);
|
||
|
WARN_EXPR(arrival_time);
|
||
|
WARN_EXPR(m_last_arrival_time);
|
||
|
ERROR_MSG("FIFO ordering violated");
|
||
|
}
|
||
|
}
|
||
|
m_last_arrival_time = arrival_time;
|
||
|
|
||
|
// compute the delay cycles and set enqueue time
|
||
|
Message* msg_ptr = NULL;
|
||
|
msg_ptr = message.mod_ref();
|
||
|
assert(msg_ptr != NULL);
|
||
|
assert(g_eventQueue_ptr->getTime() >= msg_ptr->getLastEnqueueTime()); // ensure we aren't dequeued early
|
||
|
msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles());
|
||
|
msg_ptr->setLastEnqueueTime(arrival_time);
|
||
|
|
||
|
// Insert the message into the priority heap
|
||
|
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
|
||
|
m_prio_heap.insert(thisNode);
|
||
|
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
|
||
|
DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name
|
||
|
+ " with arrival_time " + int_to_string(arrival_time)
|
||
|
+ " cur_time: " + int_to_string(g_eventQueue_ptr->getTime()) + ".");
|
||
|
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
|
||
|
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
|
||
|
|
||
|
// Schedule the wakeup
|
||
|
if (m_consumer_ptr != NULL) {
|
||
|
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time);
|
||
|
} else {
|
||
|
WARN_EXPR(*this);
|
||
|
WARN_EXPR(m_name);
|
||
|
ERROR_MSG("No consumer");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
|
||
|
{
|
||
|
int delay_cycles = -1; // null value
|
||
|
|
||
|
dequeue(message);
|
||
|
|
||
|
// get the delay cycles
|
||
|
delay_cycles = setAndReturnDelayCycles(message);
|
||
|
|
||
|
assert(delay_cycles >= 0);
|
||
|
return delay_cycles;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::dequeue(MsgPtr& message)
|
||
|
{
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,"dequeue from " + m_name);
|
||
|
message = m_prio_heap.peekMin().m_msgptr;
|
||
|
|
||
|
pop();
|
||
|
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
|
||
|
}
|
||
|
|
||
|
int MessageBuffer::dequeue_getDelayCycles()
|
||
|
{
|
||
|
int delay_cycles = -1; // null value
|
||
|
|
||
|
// get MsgPtr of the message about to be dequeued
|
||
|
MsgPtr message = m_prio_heap.peekMin().m_msgptr;
|
||
|
|
||
|
// get the delay cycles
|
||
|
delay_cycles = setAndReturnDelayCycles(message);
|
||
|
|
||
|
dequeue();
|
||
|
|
||
|
assert(delay_cycles >= 0);
|
||
|
return delay_cycles;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::pop()
|
||
|
{
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,"pop from " + m_name);
|
||
|
assert(isReady());
|
||
|
Time ready_time = m_prio_heap.extractMin().m_time;
|
||
|
// record previous size and time so the current buffer size isn't adjusted until next cycle
|
||
|
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) {
|
||
|
m_size_at_cycle_start = m_size;
|
||
|
m_time_last_time_pop = g_eventQueue_ptr->getTime();
|
||
|
}
|
||
|
m_size--;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::clear()
|
||
|
{
|
||
|
while(m_prio_heap.size() > 0){
|
||
|
m_prio_heap.extractMin();
|
||
|
}
|
||
|
|
||
|
ASSERT(m_prio_heap.size() == 0);
|
||
|
|
||
|
m_msg_counter = 0;
|
||
|
m_size = 0;
|
||
|
m_time_last_time_enqueue = 0;
|
||
|
m_time_last_time_pop = 0;
|
||
|
m_size_at_cycle_start = 0;
|
||
|
m_msgs_this_cycle = 0;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::recycle()
|
||
|
{
|
||
|
// const int RECYCLE_LATENCY = 3;
|
||
|
DEBUG_MSG(QUEUE_COMP,MedPrio,"recycling " + m_name);
|
||
|
assert(isReady());
|
||
|
MessageBufferNode node = m_prio_heap.extractMin();
|
||
|
node.m_time = g_eventQueue_ptr->getTime() + RECYCLE_LATENCY;
|
||
|
m_prio_heap.insert(node);
|
||
|
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, g_eventQueue_ptr->getTime() + RECYCLE_LATENCY);
|
||
|
}
|
||
|
|
||
|
int MessageBuffer::setAndReturnDelayCycles(MsgPtr& message)
|
||
|
{
|
||
|
int delay_cycles = -1; // null value
|
||
|
|
||
|
// get the delay cycles of the message at the top of the queue
|
||
|
Message* msg_ptr = message.ref();
|
||
|
|
||
|
// this function should only be called on dequeue
|
||
|
// ensure the msg hasn't been enqueued
|
||
|
assert(msg_ptr->getLastEnqueueTime() <= g_eventQueue_ptr->getTime());
|
||
|
msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles());
|
||
|
delay_cycles = msg_ptr->getDelayedCycles();
|
||
|
|
||
|
assert(delay_cycles >= 0);
|
||
|
return delay_cycles;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::print(ostream& out) const
|
||
|
{
|
||
|
out << "[MessageBuffer: ";
|
||
|
if (m_consumer_ptr != NULL) {
|
||
|
out << " consumer-yes ";
|
||
|
}
|
||
|
out << m_prio_heap << "] " << m_name << endl;
|
||
|
}
|
||
|
|
||
|
void MessageBuffer::printStats(ostream& out)
|
||
|
{
|
||
|
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter << " full:" << m_not_avail_count << endl;
|
||
|
}
|
||
|
|