gem5/src/arch/x86/isa/microops/microops.isa

64 lines
2.6 KiB
Plaintext
Raw Normal View History

// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
The process of going from an instruction definition to an instruction to be returned by the decoder has been fleshed out more. The following steps describe how an instruction implementation becomes a StaticInst. 1. Microops are created. These are StaticInsts use templates to provide a basic form of polymorphism without having to make the microassembler smarter. 2. An instruction class is created which has a "templated" microcode program as it's docstring. The template parameters are refernced with ^ following by a number. 3. An instruction in the decoder references an instruction template using it's mnemonic. The parameters to it's format end up replacing the placeholders. These parameters describe a source for an operand which could be memory, a register, or an immediate. It it's a register, the register index is used. If it's memory, eventually a load/store will be pre/postpended to the instruction template and it's destination register will be used in place of the ^. If it's an immediate, the immediate is used. Some operand types, specifically those that come from the ModRM byte, need to be decoded further into memory vs. register versions. This is accomplished by making the decode_block text for these instructions another case statement based off ModRM. 4. Once all of the template parameters have been handled, the instruction goes throw the microcode assembler which resolves labels and creates a list of python op objects. If an operand is a register, it uses a % prefix, an immediate uses $, and a label uses @. If the operand is just letters, numbers, and underscores, it can appear immediately after the prefix. If it's not, it can be encolsed in non nested {}s. 5. If there is a single "op" object (which corresponds to a single microop) the decoder is set up to return it directly. If not, a macroop wrapper is created around it. In the future, I'm considering seperating the operand type specialization from the template substitution step. A problem this introduces is that either the template arguments need to be kept around for the specialization step, or they need to be re-extracted. Re-extraction might be the way to go so that the operand formats can be coded directly into the micro assembler template without having to pass them in as parameters. I don't know if that's actually useful, though. src/arch/x86/isa/decoder/one_byte_opcodes.isa: src/arch/x86/isa/microasm.isa: src/arch/x86/isa/microops/microops.isa: src/arch/x86/isa/operands.isa: src/arch/x86/isa/microops/base.isa: Implemented polymorphic microops and changed around the microcode assembler syntax. --HG-- extra : convert_revision : e341f7b8ea9350a31e586a3d33250137e5954f43
2007-04-05 01:35:20 +02:00
//Common microop stuff
##include "base.isa"
//Floating point definitions
##include "fpop.isa"
//Register microop definitions
##include "regop.isa"
//Load immediate microop definition
##include "limmop.isa"
//Load/store microop definitions
##include "ldstop.isa"
//Media microop definitions
##include "mediaop.isa"
//Control flow microop definitions
##include "seqop.isa"
//Miscellaneous microop definitions
##include "specop.isa"
//Microops for printing out debug messages through M5
##include "debug.isa"