gem5/src/arch/power/isa/decoder.isa

595 lines
20 KiB
Plaintext
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2009 The University of Edinburgh
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Timothy M. Jones
////////////////////////////////////////////////////////////////////
//
// The actual Power ISA decoder
// ------------------------------
//
// I've used the Power ISA Book I v2.06 for instruction formats,
// opcode numbers, register names, etc.
//
decode OPCODE default Unknown::unknown() {
format IntImmOp {
10: cmpli({{
Xer xer = XER;
uint32_t cr = makeCRField(Ra, (uint32_t)uimm, xer.so);
CR = insertCRField(CR, BF, cr);
}});
11: cmpi({{
Xer xer = XER;
uint32_t cr = makeCRField(Ra_sw, (int32_t)imm, xer.so);
CR = insertCRField(CR, BF, cr);
}});
}
// Some instructions use bits 21 - 30, others 22 - 30. We have to use
// the larger size to account for all opcodes. For those that use the
// smaller value, the OE bit is bit 21. Therefore, we have two versions
// of each instruction: 1 with OE set, the other without. For an
// example see 'add' and 'addo'.
31: decode XO_XO {
// These instructions can all be reduced to the form
// Rt = src1 + src2 [+ CA], therefore we just give src1 and src2
// (and, if necessary, CA) definitions and let the python script
// deal with setting things up correctly. We also give flags to
// say which control registers to set.
format IntSumOp {
266: add({{ Ra }}, {{ Rb }});
40: subf({{ ~Ra }}, {{ Rb }}, {{ 1 }});
10: addc({{ Ra }}, {{ Rb }},
computeCA = true);
8: subfc({{ ~Ra }}, {{ Rb }}, {{ 1 }},
true);
104: neg({{ ~Ra }}, {{ 1 }});
138: adde({{ Ra }}, {{ Rb }}, {{ xer.ca }},
true);
234: addme({{ Ra }}, {{ (uint32_t)-1 }}, {{ xer.ca }},
true);
136: subfe({{ ~Ra }}, {{ Rb }}, {{ xer.ca }},
true);
232: subfme({{ ~Ra }}, {{ (uint32_t)-1 }}, {{ xer.ca }},
true);
202: addze({{ Ra }}, {{ xer.ca }},
computeCA = true);
200: subfze({{ ~Ra }}, {{ xer.ca }},
computeCA = true);
}
// Arithmetic instructions all use source registers Ra and Rb,
// with destination register Rt.
format IntArithOp {
75: mulhw({{ int64_t prod = Ra_sq * Rb_sq; Rt = prod >> 32; }});
11: mulhwu({{ uint64_t prod = Ra_uq * Rb_uq; Rt = prod >> 32; }});
235: mullw({{ int64_t prod = Ra_sq * Rb_sq; Rt = prod; }});
747: mullwo({{ int64_t src1 = Ra_sq; int64_t src2 = Rb; int64_t prod = src1 * src2; Rt = prod; }},
true);
491: divw({{
int32_t src1 = Ra_sw;
int32_t src2 = Rb_sw;
if ((src1 != 0x80000000 || src2 != 0xffffffff)
&& src2 != 0) {
Rt = src1 / src2;
} else {
Rt = 0;
}
}});
1003: divwo({{
int32_t src1 = Ra_sw;
int32_t src2 = Rb_sw;
if ((src1 != 0x80000000 || src2 != 0xffffffff)
&& src2 != 0) {
Rt = src1 / src2;
} else {
Rt = 0;
divSetOV = true;
}
}},
true);
459: divwu({{
uint32_t src1 = Ra_sw;
uint32_t src2 = Rb_sw;
if (src2 != 0) {
Rt = src1 / src2;
} else {
Rt = 0;
}
}});
971: divwuo({{
uint32_t src1 = Ra_sw;
uint32_t src2 = Rb_sw;
if (src2 != 0) {
Rt = src1 / src2;
} else {
Rt = 0;
divSetOV = true;
}
}},
true);
}
// Integer logic instructions use source registers Rs and Rb,
// with destination register Ra.
format IntLogicOp {
28: and({{ Ra = Rs & Rb; }});
316: xor({{ Ra = Rs ^ Rb; }});
476: nand({{ Ra = ~(Rs & Rb); }});
444: or({{ Ra = Rs | Rb; }});
124: nor({{ Ra = ~(Rs | Rb); }});
60: andc({{ Ra = Rs & ~Rb; }});
954: extsb({{ Ra = sext<8>(Rs); }});
284: eqv({{ Ra = ~(Rs ^ Rb); }});
412: orc({{ Ra = Rs | ~Rb; }});
922: extsh({{ Ra = sext<16>(Rs); }});
26: cntlzw({{ Ra = Rs == 0 ? 32 : 31 - findMsbSet(Rs); }});
508: cmpb({{
uint32_t val = 0;
for (int n = 0; n < 32; n += 8) {
if(bits(Rs, n, n+7) == bits(Rb, n, n+7)) {
val = insertBits(val, n, n+7, 0xff);
}
}
Ra = val;
}});
24: slw({{
if (Rb & 0x20) {
Ra = 0;
} else {
Ra = Rs << (Rb & 0x1f);
}
}});
536: srw({{
if (Rb & 0x20) {
Ra = 0;
} else {
Ra = Rs >> (Rb & 0x1f);
}
}});
792: sraw({{
bool shiftSetCA = false;
int32_t s = Rs;
if (Rb == 0) {
Ra = Rs;
shiftSetCA = true;
} else if (Rb & 0x20) {
if (s < 0) {
Ra = (uint32_t)-1;
if (s & 0x7fffffff) {
shiftSetCA = true;
} else {
shiftSetCA = false;
}
} else {
Ra = 0;
shiftSetCA = false;
}
} else {
Ra = s >> (Rb & 0x1f);
if (s < 0 && (s << (32 - (Rb & 0x1f))) != 0) {
shiftSetCA = true;
} else {
shiftSetCA = false;
}
}
Xer xer1 = XER;
if (shiftSetCA) {
xer1.ca = 1;
} else {
xer1.ca = 0;
}
XER = xer1;
}});
}
// Integer logic instructions with a shift value.
format IntShiftOp {
824: srawi({{
bool shiftSetCA = false;
if (sh == 0) {
Ra = Rs;
shiftSetCA = false;
} else {
int32_t s = Rs;
Ra = s >> sh;
if (s < 0 && (s << (32 - sh)) != 0) {
shiftSetCA = true;
} else {
shiftSetCA = false;
}
}
Xer xer1 = XER;
if (shiftSetCA) {
xer1.ca = 1;
} else {
xer1.ca = 0;
}
XER = xer1;
}});
}
// Generic integer format instructions.
format IntOp {
0: cmp({{
Xer xer = XER;
uint32_t cr = makeCRField(Ra_sw, Rb_sw, xer.so);
CR = insertCRField(CR, BF, cr);
}});
32: cmpl({{
Xer xer = XER;
uint32_t cr = makeCRField(Ra, Rb, xer.so);
CR = insertCRField(CR, BF, cr);
}});
144: mtcrf({{
uint32_t mask = 0;
for (int i = 0; i < 8; ++i) {
if (((FXM >> i) & 0x1) == 0x1) {
mask |= 0xf << (4 * i);
}
}
CR = (Rs & mask) | (CR & ~mask);
}});
19: mfcr({{ Rt = CR; }});
339: decode SPR {
0x20: mfxer({{ Rt = XER; }});
0x100: mflr({{ Rt = LR; }});
0x120: mfctr({{ Rt = CTR; }});
}
467: decode SPR {
0x20: mtxer({{ XER = Rs; }});
0x100: mtlr({{ LR = Rs; }});
0x120: mtctr({{ CTR = Rs; }});
}
}
// All loads with an index register. The non-update versions
// all use the value 0 if Ra == R0, not the value contained in
// R0. Others update Ra with the effective address. In all cases,
// Ra and Rb are source registers, Rt is the destintation.
format LoadIndexOp {
87: lbzx({{ Rt = Mem_ub; }});
279: lhzx({{ Rt = Mem_uh; }});
343: lhax({{ Rt = Mem_sh; }});
23: lwzx({{ Rt = Mem; }});
341: lwax({{ Rt = Mem_sw; }});
20: lwarx({{ Rt = Mem_sw; Rsv = 1; RsvLen = 4; RsvAddr = EA; }});
535: lfsx({{ Ft_sf = Mem_sf; }});
599: lfdx({{ Ft = Mem_df; }});
855: lfiwax({{ Ft_uw = Mem; }});
}
format LoadIndexUpdateOp {
119: lbzux({{ Rt = Mem_ub; }});
311: lhzux({{ Rt = Mem_uh; }});
375: lhaux({{ Rt = Mem_sh; }});
55: lwzux({{ Rt = Mem; }});
373: lwaux({{ Rt = Mem_sw; }});
567: lfsux({{ Ft_sf = Mem_sf; }});
631: lfdux({{ Ft = Mem_df; }});
}
format StoreIndexOp {
215: stbx({{ Mem_ub = Rs_ub; }});
407: sthx({{ Mem_uh = Rs_uh; }});
151: stwx({{ Mem = Rs; }});
150: stwcx({{
bool store_performed = false;
Mem = Rs;
if (Rsv) {
if (RsvLen == 4) {
if (RsvAddr == EA) {
store_performed = true;
}
}
}
Xer xer = XER;
Cr cr = CR;
cr.cr0 = ((store_performed ? 0x2 : 0x0) | xer.so);
CR = cr;
Rsv = 0;
}});
663: stfsx({{ Mem_sf = Fs_sf; }});
727: stfdx({{ Mem_df = Fs; }});
983: stfiwx({{ Mem = Fs_uw; }});
}
format StoreIndexUpdateOp {
247: stbux({{ Mem_ub = Rs_ub; }});
439: sthux({{ Mem_uh = Rs_uh; }});
183: stwux({{ Mem = Rs; }});
695: stfsux({{ Mem_sf = Fs_sf; }});
759: stfdux({{ Mem_df = Fs; }});
}
// These instructions all provide data cache hints
format MiscOp {
278: dcbt({{ }});
246: dcbtst({{ }});
598: sync({{ }}, [ IsMemBarrier ]);
854: eieio({{ }}, [ IsMemBarrier ]);
}
}
format IntImmArithCheckRaOp {
14: addi({{ Rt = Ra + imm; }},
{{ Rt = imm }});
15: addis({{ Rt = Ra + (imm << 16); }},
{{ Rt = imm << 16; }});
}
format IntImmArithOp {
12: addic({{ uint32_t src = Ra; Rt = src + imm; }},
[computeCA]);
13: addic_({{ uint32_t src = Ra; Rt = src + imm; }},
[computeCA, computeCR0]);
8: subfic({{ int32_t src = ~Ra; Rt = src + imm + 1; }},
[computeCA]);
7: mulli({{
int32_t src = Ra_sw;
int64_t prod = src * imm;
Rt = (uint32_t)prod;
}});
}
format IntImmLogicOp {
24: ori({{ Ra = Rs | uimm; }});
25: oris({{ Ra = Rs | (uimm << 16); }});
26: xori({{ Ra = Rs ^ uimm; }});
27: xoris({{ Ra = Rs ^ (uimm << 16); }});
28: andi_({{ Ra = Rs & uimm; }},
true);
29: andis_({{ Ra = Rs & (uimm << 16); }},
true);
}
16: decode AA {
// Conditionally branch relative to PC based on CR and CTR.
format BranchPCRelCondCtr {
0: bc({{ NPC = (uint32_t)(PC + disp); }});
}
// Conditionally branch to fixed address based on CR and CTR.
format BranchNonPCRelCondCtr {
1: bca({{ NPC = targetAddr; }});
}
}
18: decode AA {
// Unconditionally branch relative to PC.
format BranchPCRel {
0: b({{ NPC = (uint32_t)(PC + disp); }});
}
// Unconditionally branch to fixed address.
format BranchNonPCRel {
1: ba({{ NPC = targetAddr; }});
}
}
19: decode XO_XO {
// Conditionally branch to address in LR based on CR and CTR.
format BranchLrCondCtr {
16: bclr({{ NPC = LR & 0xfffffffc; }});
}
// Conditionally branch to address in CTR based on CR.
format BranchCtrCond {
528: bcctr({{ NPC = CTR & 0xfffffffc; }});
}
// Condition register manipulation instructions.
format CondLogicOp {
257: crand({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa & crBb);
}});
449: cror({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa | crBb);
}});
255: crnand({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, !(crBa & crBb));
}});
193: crxor({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa ^ crBb);
}});
33: crnor({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, !(crBa | crBb));
}});
289: creqv({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa == crBb);
}});
129: crandc({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa & !crBb);
}});
417: crorc({{
uint32_t crBa = bits(CR, 31 - ba);
uint32_t crBb = bits(CR, 31 - bb);
CR = insertBits(CR, 31 - bt, crBa | !crBb);
}});
}
format CondMoveOp {
0: mcrf({{
uint32_t crBfa = bits(CR, 31 - bfa*4, 28 - bfa*4);
CR = insertBits(CR, 31 - bf*4, 28 - bf*4, crBfa);
}});
}
format MiscOp {
150: isync({{ }}, [ IsSerializeAfter ]);
}
}
format IntRotateOp {
21: rlwinm({{ Ra = rotateValue(Rs, sh) & fullMask; }});
23: rlwnm({{ Ra = rotateValue(Rs, Rb) & fullMask; }});
20: rlwimi({{ Ra = (rotateValue(Rs, sh) & fullMask) | (Ra & ~fullMask); }});
}
format LoadDispOp {
34: lbz({{ Rt = Mem_ub; }});
40: lhz({{ Rt = Mem_uh; }});
42: lha({{ Rt = Mem_sh; }});
32: lwz({{ Rt = Mem; }});
58: lwa({{ Rt = Mem_sw; }},
{{ EA = Ra + (disp & 0xfffffffc); }},
{{ EA = disp & 0xfffffffc; }});
48: lfs({{ Ft_sf = Mem_sf; }});
50: lfd({{ Ft = Mem_df; }});
}
format LoadDispUpdateOp {
35: lbzu({{ Rt = Mem_ub; }});
41: lhzu({{ Rt = Mem_uh; }});
43: lhau({{ Rt = Mem_sh; }});
33: lwzu({{ Rt = Mem; }});
49: lfsu({{ Ft_sf = Mem_sf; }});
51: lfdu({{ Ft = Mem_df; }});
}
format StoreDispOp {
38: stb({{ Mem_ub = Rs_ub; }});
44: sth({{ Mem_uh = Rs_uh; }});
36: stw({{ Mem = Rs; }});
52: stfs({{ Mem_sf = Fs_sf; }});
54: stfd({{ Mem_df = Fs; }});
}
format StoreDispUpdateOp {
39: stbu({{ Mem_ub = Rs_ub; }});
45: sthu({{ Mem_uh = Rs_uh; }});
37: stwu({{ Mem = Rs; }});
53: stfsu({{ Mem_sf = Fs_sf; }});
55: stfdu({{ Mem_df = Fs; }});
}
syscall_emul: [patch 13/22] add system call retry capability This changeset adds functionality that allows system calls to retry without affecting thread context state such as the program counter or register values for the associated thread context (when system calls return with a retry fault). This functionality is needed to solve problems with blocking system calls in multi-process or multi-threaded simulations where information is passed between processes/threads. Blocking system calls can cause deadlock because the simulator itself is single threaded. There is only a single thread servicing the event queue which can cause deadlock if the thread hits a blocking system call instruction. To illustrate the problem, consider two processes using the producer/consumer sharing model. The processes can use file descriptors and the read and write calls to pass information to one another. If the consumer calls the blocking read system call before the producer has produced anything, the call will block the event queue (while executing the system call instruction) and deadlock the simulation. The solution implemented in this changeset is to recognize that the system calls will block and then generate a special retry fault. The fault will be sent back up through the function call chain until it is exposed to the cpu model's pipeline where the fault becomes visible. The fault will trigger the cpu model to replay the instruction at a future tick where the call has a chance to succeed without actually going into a blocking state. In subsequent patches, we recognize that a syscall will block by calling a non-blocking poll (from inside the system call implementation) and checking for events. When events show up during the poll, it signifies that the call would not have blocked and the syscall is allowed to proceed (calling an underlying host system call if necessary). If no events are returned from the poll, we generate the fault and try the instruction for the thread context at a distant tick. Note that retrying every tick is not efficient. As an aside, the simulator has some multi-threading support for the event queue, but it is not used by default and needs work. Even if the event queue was completely multi-threaded, meaning that there is a hardware thread on the host servicing a single simulator thread contexts with a 1:1 mapping between them, it's still possible to run into deadlock due to the event queue barriers on quantum boundaries. The solution of replaying at a later tick is the simplest solution and solves the problem generally.
2015-07-20 16:15:21 +02:00
17: IntOp::sc({{ xc->syscall(R0, &fault); }},
[ IsSyscall, IsNonSpeculative, IsSerializeAfter ]);
format FloatArithOp {
59: decode A_XO {
21: fadds({{ Ft = Fa + Fb; }});
20: fsubs({{ Ft = Fa - Fb; }});
25: fmuls({{ Ft = Fa * Fc; }});
18: fdivs({{ Ft = Fa / Fb; }});
29: fmadds({{ Ft = (Fa * Fc) + Fb; }});
28: fmsubs({{ Ft = (Fa * Fc) - Fb; }});
31: fnmadds({{ Ft = -((Fa * Fc) + Fb); }});
30: fnmsubs({{ Ft = -((Fa * Fc) - Fb); }});
}
}
63: decode A_XO {
format FloatArithOp {
21: fadd({{ Ft = Fa + Fb; }});
20: fsub({{ Ft = Fa - Fb; }});
25: fmul({{ Ft = Fa * Fc; }});
18: fdiv({{ Ft = Fa / Fb; }});
29: fmadd({{ Ft = (Fa * Fc) + Fb; }});
28: fmsub({{ Ft = (Fa * Fc) - Fb; }});
31: fnmadd({{ Ft = -((Fa * Fc) + Fb); }});
30: fnmsub({{ Ft = -((Fa * Fc) - Fb); }});
}
default: decode XO_XO {
format FloatConvertOp {
12: frsp({{ Ft_sf = Fb; }});
15: fctiwz({{ Ft_sw = (int32_t)trunc(Fb); }});
}
format FloatOp {
0: fcmpu({{
uint32_t c = makeCRField(Fa, Fb);
Fpscr fpscr = FPSCR;
fpscr.fprf.fpcc = c;
FPSCR = fpscr;
CR = insertCRField(CR, BF, c);
}});
}
format FloatRCCheckOp {
72: fmr({{ Ft = Fb; }});
264: fabs({{
Ft_uq = Fb_uq;
Ft_uq = insertBits(Ft_uq, 63, 0); }});
136: fnabs({{
Ft_uq = Fb_uq;
Ft_uq = insertBits(Ft_uq, 63, 1); }});
40: fneg({{ Ft = -Fb; }});
8: fcpsgn({{
Ft_uq = Fb_uq;
Ft_uq = insertBits(Ft_uq, 63, Fa_uq<63:63>);
}});
583: mffs({{ Ft_uq = FPSCR; }});
134: mtfsfi({{
FPSCR = insertCRField(FPSCR, BF + (8 * (1 - W_FIELD)),
U_FIELD);
}});
711: mtfsf({{
if (L_FIELD == 1) { FPSCR = Fb_uq; }
else {
for (int i = 0; i < 8; ++i) {
if (bits(FLM, i) == 1) {
int k = 4 * (i + (8 * (1 - W_FIELD)));
FPSCR = insertBits(FPSCR, k, k + 3,
bits(Fb_uq, k, k + 3));
}
}
}
}});
70: mtfsb0({{ FPSCR = insertBits(FPSCR, 31 - BT, 0); }});
38: mtfsb1({{ FPSCR = insertBits(FPSCR, 31 - BT, 1); }});
}
}
}
}