gem5/src/mem/ruby/profiler/Profiler.cc

1054 lines
41 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This file has been modified by Kevin Moore and Dan Nussbaum of the
Scalable Systems Research Group at Sun Microsystems Laboratories
(http://research.sun.com/scalable/) to support the Adaptive
Transactional Memory Test Platform (ATMTP).
Please send email to atmtp-interest@sun.com with feedback, questions, or
to request future announcements about ATMTP.
----------------------------------------------------------------------
File modification date: 2008-02-23
----------------------------------------------------------------------
*/
/*
* Profiler.cc
*
* Description: See Profiler.hh
*
* $Id$
*
*/
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/profiler/CacheProfiler.hh"
#include "mem/ruby/profiler/AddressProfiler.hh"
#include "mem/ruby/system/System.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/gems_common/PrioHeap.hh"
#include "mem/protocol/CacheMsg.hh"
#include "mem/protocol/Protocol.hh"
#include "mem/gems_common/util.hh"
#include "mem/gems_common/Map.hh"
#include "mem/ruby/common/Debug.hh"
#include "mem/protocol/MachineType.hh"
// Allows use of times() library call, which determines virtual runtime
#include <sys/times.h>
extern std::ostream * debug_cout_ptr;
static double process_memory_total();
static double process_memory_resident();
Profiler::Profiler(const string & name)
: m_conflicting_histogram(-1)
{
m_name = name;
m_requestProfileMap_ptr = new Map<string, int>;
m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache");
m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache");
m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache");
m_inst_profiler_ptr = NULL;
m_address_profiler_ptr = NULL;
/*
m_address_profiler_ptr = new AddressProfiler;
m_inst_profiler_ptr = NULL;
if (m_all_instructions) {
m_inst_profiler_ptr = new AddressProfiler;
}
*/
m_conflicting_map_ptr = new Map<Address, Time>;
m_real_time_start_time = time(NULL); // Not reset in clearStats()
m_stats_period = 1000000; // Default
m_periodic_output_file_ptr = &cerr;
}
Profiler::~Profiler()
{
if (m_periodic_output_file_ptr != &cerr) {
delete m_periodic_output_file_ptr;
}
delete m_address_profiler_ptr;
delete m_L1D_cache_profiler_ptr;
delete m_L1I_cache_profiler_ptr;
delete m_L2_cache_profiler_ptr;
delete m_requestProfileMap_ptr;
delete m_conflicting_map_ptr;
}
void Profiler::init(const vector<string> & argv, vector<string> memory_control_names)
{
// added by SS
vector<string>::iterator it;
memory_control_profiler* mcp;
m_memory_control_names = memory_control_names;
// printf ( "Here in Profiler::init \n");
for ( it=memory_control_names.begin() ; it < memory_control_names.end(); it++ ){
// printf ( "Here in Profiler::init memory control name %s \n", (*it).c_str());
mcp = new memory_control_profiler;
mcp->m_memReq = 0;
mcp->m_memBankBusy = 0;
mcp->m_memBusBusy = 0;
mcp->m_memReadWriteBusy = 0;
mcp->m_memDataBusBusy = 0;
mcp->m_memTfawBusy = 0;
mcp->m_memRefresh = 0;
mcp->m_memRead = 0;
mcp->m_memWrite = 0;
mcp->m_memWaitCycles = 0;
mcp->m_memInputQ = 0;
mcp->m_memBankQ = 0;
mcp->m_memArbWait = 0;
mcp->m_memRandBusy = 0;
mcp->m_memNotOld = 0;
mcp->m_banks_per_rank = RubySystem::getMemoryControl((*it).c_str())->getBanksPerRank();
mcp->m_ranks_per_dimm = RubySystem::getMemoryControl((*it).c_str())->getRanksPerDimm();
mcp->m_dimms_per_channel = RubySystem::getMemoryControl((*it).c_str())->getDimmsPerChannel();
int totalBanks = mcp->m_banks_per_rank
* mcp->m_ranks_per_dimm
* mcp->m_dimms_per_channel;
mcp->m_memBankCount.setSize(totalBanks);
m_memory_control_profilers [(*it).c_str()] = mcp;
}
clearStats();
m_hot_lines = false;
m_all_instructions = false;
for (size_t i=0; i<argv.size(); i+=2) {
if ( argv[i] == "hot_lines") {
m_hot_lines = (argv[i+1]=="true");
} else if ( argv[i] == "all_instructions") {
m_all_instructions = (argv[i+1]=="true");
}else {
cerr << "WARNING: Profiler: Unkown configuration parameter: " << argv[i] << endl;
assert(false);
}
}
m_address_profiler_ptr = new AddressProfiler;
m_address_profiler_ptr -> setHotLines(m_hot_lines);
m_address_profiler_ptr -> setAllInstructions(m_all_instructions);
if (m_all_instructions) {
m_inst_profiler_ptr = new AddressProfiler;
m_inst_profiler_ptr -> setHotLines(m_hot_lines);
m_inst_profiler_ptr -> setAllInstructions(m_all_instructions);
}
}
void Profiler::wakeup()
{
// FIXME - avoid the repeated code
Vector<integer_t> perProcInstructionCount;
perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
Vector<integer_t> perProcCycleCount;
perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
// The +1 allows us to avoid division by zero
}
integer_t total_misses = m_perProcTotalMisses.sum();
integer_t instruction_executed = perProcInstructionCount.sum();
integer_t simics_cycles_executed = perProcCycleCount.sum();
integer_t transactions_started = m_perProcStartTransaction.sum();
integer_t transactions_ended = m_perProcEndTransaction.sum();
(*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl;
(*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
(*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
(*m_periodic_output_file_ptr) << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
(*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
(*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
(*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl;
(*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl;
(*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl;
(*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl;
if (process_memory_total() > 0) {
(*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
}
(*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl;
*m_periodic_output_file_ptr << endl;
if (m_all_instructions) {
m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr);
}
//g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr);
g_eventQueue_ptr->scheduleEvent(this, m_stats_period);
}
void Profiler::setPeriodicStatsFile(const string& filename)
{
cout << "Recording periodic statistics to file '" << filename << "' every "
<< m_stats_period << " Ruby cycles" << endl;
if (m_periodic_output_file_ptr != &cerr) {
delete m_periodic_output_file_ptr;
}
m_periodic_output_file_ptr = new ofstream(filename.c_str());
g_eventQueue_ptr->scheduleEvent(this, 1);
}
void Profiler::setPeriodicStatsInterval(integer_t period)
{
cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl;
m_stats_period = period;
g_eventQueue_ptr->scheduleEvent(this, 1);
}
void Profiler::printConfig(ostream& out) const
{
out << endl;
out << "Profiler Configuration" << endl;
out << "----------------------" << endl;
out << "periodic_stats_period: " << m_stats_period << endl;
}
void Profiler::print(ostream& out) const
{
out << "[Profiler]";
}
void Profiler::printStats(ostream& out, bool short_stats)
{
out << endl;
if (short_stats) {
out << "SHORT ";
}
out << "Profiler Stats" << endl;
out << "--------------" << endl;
time_t real_time_current = time(NULL);
double seconds = difftime(real_time_current, m_real_time_start_time);
double minutes = seconds/60.0;
double hours = minutes/60.0;
double days = hours/24.0;
Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start;
if (!short_stats) {
out << "Elapsed_time_in_seconds: " << seconds << endl;
out << "Elapsed_time_in_minutes: " << minutes << endl;
out << "Elapsed_time_in_hours: " << hours << endl;
out << "Elapsed_time_in_days: " << days << endl;
out << endl;
}
// print the virtual runtimes as well
struct tms vtime;
times(&vtime);
seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
minutes = seconds / 60.0;
hours = minutes / 60.0;
days = hours / 24.0;
out << "Virtual_time_in_seconds: " << seconds << endl;
out << "Virtual_time_in_minutes: " << minutes << endl;
out << "Virtual_time_in_hours: " << hours << endl;
out << "Virtual_time_in_days: " << hours << endl;
out << endl;
out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl;
out << "Ruby_start_time: " << m_ruby_start << endl;
out << "Ruby_cycles: " << ruby_cycles << endl;
out << endl;
if (!short_stats) {
out << "mbytes_resident: " << process_memory_resident() << endl;
out << "mbytes_total: " << process_memory_total() << endl;
if (process_memory_total() > 0) {
out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl;
}
out << endl;
if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){
out << endl;
out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl;
}
}
Vector<integer_t> perProcInstructionCount;
Vector<integer_t> perProcCycleCount;
Vector<double> perProcCPI;
Vector<double> perProcMissesPerInsn;
Vector<double> perProcInsnPerTrans;
Vector<double> perProcCyclesPerTrans;
Vector<double> perProcMissesPerTrans;
perProcInstructionCount.setSize(RubySystem::getNumberOfSequencers());
perProcCycleCount.setSize(RubySystem::getNumberOfSequencers());
perProcCPI.setSize(RubySystem::getNumberOfSequencers());
perProcMissesPerInsn.setSize(RubySystem::getNumberOfSequencers());
perProcInsnPerTrans.setSize(RubySystem::getNumberOfSequencers());
perProcCyclesPerTrans.setSize(RubySystem::getNumberOfSequencers());
perProcMissesPerTrans.setSize(RubySystem::getNumberOfSequencers());
for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
perProcInstructionCount[i] = g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1;
perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1;
// The +1 allows us to avoid division by zero
perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i];
perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i]));
int trans = m_perProcEndTransaction[i];
if (trans == 0) {
perProcInsnPerTrans[i] = 0;
perProcCyclesPerTrans[i] = 0;
perProcMissesPerTrans[i] = 0;
} else {
perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans);
perProcCyclesPerTrans[i] = ruby_cycles / double(trans);
perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans);
}
}
integer_t total_misses = m_perProcTotalMisses.sum();
integer_t user_misses = m_perProcUserMisses.sum();
integer_t supervisor_misses = m_perProcSupervisorMisses.sum();
integer_t instruction_executed = perProcInstructionCount.sum();
integer_t simics_cycles_executed = perProcCycleCount.sum();
integer_t transactions_started = m_perProcStartTransaction.sum();
integer_t transactions_ended = m_perProcEndTransaction.sum();
double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0;
double cycles_per_transaction = (transactions_ended != 0) ? (RubySystem::getNumberOfSequencers() * double(ruby_cycles)) / double(transactions_ended) : 0;
double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0;
out << "Total_misses: " << total_misses << endl;
out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl;
out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl;
out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl;
out << endl;
out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl;
out << "ruby_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl;
out << "cycles_per_instruction: " << (RubySystem::getNumberOfSequencers()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl;
out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl;
out << endl;
out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl;
out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl;
out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl;
out << "cycles_per_transaction: " << cycles_per_transaction << " " << perProcCyclesPerTrans << endl;
out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl;
out << endl;
// m_L1D_cache_profiler_ptr->printStats(out);
// m_L1I_cache_profiler_ptr->printStats(out);
// m_L2_cache_profiler_ptr->printStats(out);
out << endl;
vector<string>::iterator it;
for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
long long int m_memReq = m_memory_control_profilers[(*it).c_str()] -> m_memReq;
long long int m_memRefresh = m_memory_control_profilers[(*it).c_str()] -> m_memRefresh;
long long int m_memInputQ = m_memory_control_profilers[(*it).c_str()] -> m_memInputQ;
long long int m_memBankQ = m_memory_control_profilers[(*it).c_str()] -> m_memBankQ;
long long int m_memWaitCycles = m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles;
long long int m_memRead = m_memory_control_profilers[(*it).c_str()] -> m_memRead;
long long int m_memWrite = m_memory_control_profilers[(*it).c_str()] -> m_memWrite;
long long int m_memBankBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy;
long long int m_memRandBusy = m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy;
long long int m_memNotOld = m_memory_control_profilers[(*it).c_str()] -> m_memNotOld;
long long int m_memArbWait = m_memory_control_profilers[(*it).c_str()] -> m_memArbWait;
long long int m_memBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy;
long long int m_memTfawBusy = m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy;
long long int m_memReadWriteBusy = m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy;
long long int m_memDataBusBusy = m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy;
Vector<long long int> m_memBankCount = m_memory_control_profilers[(*it).c_str()] -> m_memBankCount;
if (m_memReq || m_memRefresh) { // if there's a memory controller at all
long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles;
double stallsPerReq = total_stalls * 1.0 / m_memReq;
out << "Memory control:" << endl;
out << " memory_total_requests: " << m_memReq << endl; // does not include refreshes
out << " memory_reads: " << m_memRead << endl;
out << " memory_writes: " << m_memWrite << endl;
out << " memory_refreshes: " << m_memRefresh << endl;
out << " memory_total_request_delays: " << total_stalls << endl;
out << " memory_delays_per_request: " << stallsPerReq << endl;
out << " memory_delays_in_input_queue: " << m_memInputQ << endl;
out << " memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl;
out << " memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl;
// Note: The following "memory stalls" entries are a breakdown of the
// cycles which already showed up in m_memWaitCycles. The order is
// significant; it is the priority of attributing the cycles.
// For example, bank_busy is before arbitration because if the bank was
// busy, we didn't even check arbitration.
// Note: "not old enough" means that since we grouped waiting heads-of-queues
// into batches to avoid starvation, a request in a newer batch
// didn't try to arbitrate yet because there are older requests waiting.
out << " memory_stalls_for_bank_busy: " << m_memBankBusy << endl;
out << " memory_stalls_for_random_busy: " << m_memRandBusy << endl;
out << " memory_stalls_for_anti_starvation: " << m_memNotOld << endl;
out << " memory_stalls_for_arbitration: " << m_memArbWait << endl;
out << " memory_stalls_for_bus: " << m_memBusBusy << endl;
out << " memory_stalls_for_tfaw: " << m_memTfawBusy << endl;
out << " memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl;
out << " memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl;
out << " accesses_per_bank: ";
for (int bank=0; bank < m_memBankCount.size(); bank++) {
out << m_memBankCount[bank] << " ";
//if ((bank % 8) == 7) out << " " << endl;
}
out << endl;
out << endl;
}
}
if (!short_stats) {
out << "Busy Controller Counts:" << endl;
for(int i=0; i < MachineType_NUM; i++) {
for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
MachineID machID;
machID.type = (MachineType)i;
machID.num = j;
out << machID << ":" << m_busyControllerCount[i][j] << " ";
if ((j+1)%8 == 0) {
out << endl;
}
}
out << endl;
}
out << endl;
out << "Busy Bank Count:" << m_busyBankCount << endl;
out << endl;
out << "L1TBE_usage: " << m_L1tbeProfile << endl;
out << "L2TBE_usage: " << m_L2tbeProfile << endl;
out << "StopTable_usage: " << m_stopTableProfile << endl;
out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl;
out << "store_buffer_size: " << m_store_buffer_size << endl;
out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl;
out << endl;
}
if (!short_stats) {
out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
out << "----------------------------------------" << endl;
out << "miss_latency: " << m_allMissLatencyHistogram << endl;
for(int i=0; i<m_missLatencyHistograms.size(); i++) {
if (m_missLatencyHistograms[i].size() > 0) {
out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl;
}
}
for(int i=0; i<m_machLatencyHistograms.size(); i++) {
if (m_machLatencyHistograms[i].size() > 0) {
out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl;
}
}
out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl;
out << endl;
out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
out << "------------------------------------" << endl;
out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl;
}
}
for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl;
}
}
out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl;
out << "multicast_retries: " << m_multicast_retry_histogram << endl;
out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl;
out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl;
out << "explicit_training_mask: " << m_explicit_training_mask << endl;
out << endl;
if (m_all_sharing_histogram.size() > 0) {
out << "all_sharing: " << m_all_sharing_histogram << endl;
out << "read_sharing: " << m_read_sharing_histogram << endl;
out << "write_sharing: " << m_write_sharing_histogram << endl;
out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl;
out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl;
out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl;
int64 total_miss = m_cache_to_cache + m_memory_to_cache;
out << "all_misses: " << total_miss << endl;
out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl;
out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl;
out << endl;
}
if (m_conflicting_histogram.size() > 0) {
out << "conflicting_histogram: " << m_conflicting_histogram << endl;
out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl;
out << endl;
}
if (m_outstanding_requests.size() > 0) {
out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl;
if (m_outstanding_persistent_requests.size() > 0) {
out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl;
}
out << endl;
}
}
if (!short_stats) {
out << "Request vs. RubySystem State Profile" << endl;
out << "--------------------------------" << endl;
out << endl;
Vector<string> requestProfileKeys = m_requestProfileMap_ptr->keys();
requestProfileKeys.sortVector();
for(int i=0; i<requestProfileKeys.size(); i++) {
int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]);
double percent = (100.0*double(temp_int))/double(m_requests);
while (requestProfileKeys[i] != "") {
out << setw(10) << string_split(requestProfileKeys[i], ':');
}
out << setw(11) << temp_int;
out << setw(14) << percent << endl;
}
out << endl;
out << "filter_action: " << m_filter_action_histogram << endl;
if (!m_all_instructions) {
m_address_profiler_ptr->printStats(out);
}
if (m_all_instructions) {
m_inst_profiler_ptr->printStats(out);
}
out << endl;
out << "Message Delayed Cycles" << endl;
out << "----------------------" << endl;
out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl;
out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl;
for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) {
out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl;
}
printResourceUsage(out);
}
}
void Profiler::printResourceUsage(ostream& out) const
{
out << endl;
out << "Resource Usage" << endl;
out << "--------------" << endl;
integer_t pagesize = getpagesize(); // page size in bytes
out << "page_size: " << pagesize << endl;
rusage usage;
getrusage (RUSAGE_SELF, &usage);
out << "user_time: " << usage.ru_utime.tv_sec << endl;
out << "system_time: " << usage.ru_stime.tv_sec << endl;
out << "page_reclaims: " << usage.ru_minflt << endl;
out << "page_faults: " << usage.ru_majflt << endl;
out << "swaps: " << usage.ru_nswap << endl;
out << "block_inputs: " << usage.ru_inblock << endl;
out << "block_outputs: " << usage.ru_oublock << endl;
}
void Profiler::clearStats()
{
m_num_BA_unicasts = 0;
m_num_BA_broadcasts = 0;
m_ruby_start = g_eventQueue_ptr->getTime();
m_instructions_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
m_cycles_executed_at_start.setSize(RubySystem::getNumberOfSequencers());
for (int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
if (g_system_ptr == NULL) {
m_instructions_executed_at_start[i] = 0;
m_cycles_executed_at_start[i] = 0;
} else {
m_instructions_executed_at_start[i] = g_system_ptr->getInstructionCount(i);
m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i);
}
}
m_perProcTotalMisses.setSize(RubySystem::getNumberOfSequencers());
m_perProcUserMisses.setSize(RubySystem::getNumberOfSequencers());
m_perProcSupervisorMisses.setSize(RubySystem::getNumberOfSequencers());
m_perProcStartTransaction.setSize(RubySystem::getNumberOfSequencers());
m_perProcEndTransaction.setSize(RubySystem::getNumberOfSequencers());
for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
m_perProcTotalMisses[i] = 0;
m_perProcUserMisses[i] = 0;
m_perProcSupervisorMisses[i] = 0;
m_perProcStartTransaction[i] = 0;
m_perProcEndTransaction[i] = 0;
}
m_busyControllerCount.setSize(MachineType_NUM); // all machines
for(int i=0; i < MachineType_NUM; i++) {
m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i));
for(int j=0; j < MachineType_base_count((MachineType)i); j++) {
m_busyControllerCount[i][j] = 0;
}
}
m_busyBankCount = 0;
m_delayedCyclesHistogram.clear();
m_delayedCyclesNonPFHistogram.clear();
m_delayedCyclesVCHistograms.setSize(RubySystem::getNetwork()->getNumberOfVirtualNetworks());
for (int i = 0; i < RubySystem::getNetwork()->getNumberOfVirtualNetworks(); i++) {
m_delayedCyclesVCHistograms[i].clear();
}
m_gets_mask_prediction.clear();
m_getx_mask_prediction.clear();
m_explicit_training_mask.clear();
m_missLatencyHistograms.setSize(CacheRequestType_NUM);
for(int i=0; i<m_missLatencyHistograms.size(); i++) {
m_missLatencyHistograms[i].clear(200);
}
m_machLatencyHistograms.setSize(GenericMachineType_NUM+1);
for(int i=0; i<m_machLatencyHistograms.size(); i++) {
m_machLatencyHistograms[i].clear(200);
}
m_allMissLatencyHistogram.clear(200);
m_L2MissLatencyHistogram.clear(200);
m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM);
for(int i=0; i<m_SWPrefetchLatencyHistograms.size(); i++) {
m_SWPrefetchLatencyHistograms[i].clear(200);
}
m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1);
for(int i=0; i<m_SWPrefetchMachLatencyHistograms.size(); i++) {
m_SWPrefetchMachLatencyHistograms[i].clear(200);
}
m_allSWPrefetchLatencyHistogram.clear(200);
m_SWPrefetchL2MissLatencyHistogram.clear(200);
m_multicast_retry_histogram.clear();
m_L1tbeProfile.clear();
m_L2tbeProfile.clear();
m_stopTableProfile.clear();
m_filter_action_histogram.clear();
m_sequencer_requests.clear();
m_store_buffer_size.clear();
m_store_buffer_blocks.clear();
m_read_sharing_histogram.clear();
m_write_sharing_histogram.clear();
m_all_sharing_histogram.clear();
m_cache_to_cache = 0;
m_memory_to_cache = 0;
m_predictions = 0;
m_predictionOpportunities = 0;
m_goodPredictions = 0;
// clear HashMaps
m_requestProfileMap_ptr->clear();
// count requests profiled
m_requests = 0;
// Conflicting requests
m_conflicting_map_ptr->clear();
m_conflicting_histogram.clear();
m_outstanding_requests.clear();
m_outstanding_persistent_requests.clear();
m_L1D_cache_profiler_ptr->clearStats();
m_L1I_cache_profiler_ptr->clearStats();
m_L2_cache_profiler_ptr->clearStats();
// for MemoryControl:
/*
m_memReq = 0;
m_memBankBusy = 0;
m_memBusBusy = 0;
m_memTfawBusy = 0;
m_memReadWriteBusy = 0;
m_memDataBusBusy = 0;
m_memRefresh = 0;
m_memRead = 0;
m_memWrite = 0;
m_memWaitCycles = 0;
m_memInputQ = 0;
m_memBankQ = 0;
m_memArbWait = 0;
m_memRandBusy = 0;
m_memNotOld = 0;
for (int bank=0; bank < m_memBankCount.size(); bank++) {
m_memBankCount[bank] = 0;
}
*/
//added by SS
vector<string>::iterator it;
for ( it=m_memory_control_names.begin() ; it < m_memory_control_names.end(); it++ ){
m_memory_control_profilers[(*it).c_str()] -> m_memReq = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memBankBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memBusBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memTfawBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memReadWriteBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memDataBusBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memRefresh = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memRead = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memWrite = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memWaitCycles = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memInputQ = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memBankQ = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memArbWait = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memRandBusy = 0;
m_memory_control_profilers[(*it).c_str()] -> m_memNotOld = 0;
for (int bank=0; bank < m_memory_control_profilers[(*it).c_str()] -> m_memBankCount.size(); bank++) {
m_memory_control_profilers[(*it).c_str()] -> m_memBankCount[bank] = 0;
}
}
// Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared
//g_eventQueue_ptr->triggerAllEvents();
// update the start time
m_ruby_start = g_eventQueue_ptr->getTime();
}
void Profiler::profileConflictingRequests(const Address& addr)
{
assert(addr == line_address(addr));
Time last_time = m_ruby_start;
if (m_conflicting_map_ptr->exist(addr)) {
last_time = m_conflicting_map_ptr->lookup(addr);
}
Time current_time = g_eventQueue_ptr->getTime();
assert (current_time - last_time > 0);
m_conflicting_histogram.add(current_time - last_time);
m_conflicting_map_ptr->add(addr, current_time);
}
void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id)
{
if (msg.getType() != CacheRequestType_IFETCH) {
// Note: The following line should be commented out if you want to
// use the special profiling that is part of the GS320 protocol
// NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be profiled by the AddressProfiler
m_address_profiler_ptr->addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false);
}
}
void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner)
{
Set set_contacted(owner);
if (type == AccessType_Write) {
set_contacted.addSet(sharers);
}
set_contacted.remove(requestor);
int number_contacted = set_contacted.count();
if (type == AccessType_Write) {
m_write_sharing_histogram.add(number_contacted);
} else {
m_read_sharing_histogram.add(number_contacted);
}
m_all_sharing_histogram.add(number_contacted);
if (number_contacted == 0) {
m_memory_to_cache++;
} else {
m_cache_to_cache++;
}
}
void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) {
assert(virtualNetwork < m_delayedCyclesVCHistograms.size());
m_delayedCyclesHistogram.add(delayCycles);
m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles);
if (virtualNetwork != 0) {
m_delayedCyclesNonPFHistogram.add(delayCycles);
}
}
// profiles original cache requests including PUTs
void Profiler::profileRequest(const string& requestStr)
{
m_requests++;
if (m_requestProfileMap_ptr->exist(requestStr)) {
(m_requestProfileMap_ptr->lookup(requestStr))++;
} else {
m_requestProfileMap_ptr->add(requestStr, 1);
}
}
void Profiler::recordPrediction(bool wasGood, bool wasPredicted)
{
m_predictionOpportunities++;
if(wasPredicted){
m_predictions++;
if(wasGood){
m_goodPredictions++;
}
}
}
void Profiler::profileFilterAction(int action)
{
m_filter_action_histogram.add(action);
}
void Profiler::profileMulticastRetry(const Address& addr, int count)
{
m_multicast_retry_histogram.add(count);
}
void Profiler::startTransaction(int cpu)
{
m_perProcStartTransaction[cpu]++;
}
void Profiler::endTransaction(int cpu)
{
m_perProcEndTransaction[cpu]++;
}
void Profiler::controllerBusy(MachineID machID)
{
m_busyControllerCount[(int)machID.type][(int)machID.num]++;
}
void Profiler::profilePFWait(Time waitTime)
{
m_prefetchWaitHistogram.add(waitTime);
}
void Profiler::bankBusy()
{
m_busyBankCount++;
}
// non-zero cycle demand request
void Profiler::missLatency(Time t, RubyRequestType type)
{
m_allMissLatencyHistogram.add(t);
m_missLatencyHistograms[type].add(t);
/*
m_machLatencyHistograms[respondingMach].add(t);
if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
m_L2MissLatencyHistogram.add(t);
}
*/
}
// non-zero cycle prefetch request
void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach)
{
m_allSWPrefetchLatencyHistogram.add(t);
m_SWPrefetchLatencyHistograms[type].add(t);
m_SWPrefetchMachLatencyHistograms[respondingMach].add(t);
if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) {
m_SWPrefetchL2MissLatencyHistogram.add(t);
}
}
void Profiler::profileTransition(const string& component, NodeID version, Address addr,
const string& state, const string& event,
const string& next_state, const string& note)
{
const int EVENT_SPACES = 20;
const int ID_SPACES = 3;
const int TIME_SPACES = 7;
const int COMP_SPACES = 10;
const int STATE_SPACES = 6;
if ((g_debug_ptr->getDebugTime() > 0) &&
(g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) {
(* debug_cout_ptr).flags(ios::right);
(* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
(* debug_cout_ptr) << setw(ID_SPACES) << version << " ";
(* debug_cout_ptr) << setw(COMP_SPACES) << component;
(* debug_cout_ptr) << setw(EVENT_SPACES) << event << " ";
(* debug_cout_ptr).flags(ios::right);
(* debug_cout_ptr) << setw(STATE_SPACES) << state;
(* debug_cout_ptr) << ">";
(* debug_cout_ptr).flags(ios::left);
(* debug_cout_ptr) << setw(STATE_SPACES) << next_state;
(* debug_cout_ptr) << " " << addr << " " << note;
(* debug_cout_ptr) << endl;
}
}
// Helper function
static double process_memory_total()
{
const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
ifstream proc_file;
proc_file.open("/proc/self/statm");
int total_size_in_pages = 0;
int res_size_in_pages = 0;
proc_file >> total_size_in_pages;
proc_file >> res_size_in_pages;
return double(total_size_in_pages)*MULTIPLIER; // size in megabytes
}
static double process_memory_resident()
{
const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB,
ifstream proc_file;
proc_file.open("/proc/self/statm");
int total_size_in_pages = 0;
int res_size_in_pages = 0;
proc_file >> total_size_in_pages;
proc_file >> res_size_in_pages;
return double(res_size_in_pages)*MULTIPLIER; // size in megabytes
}
void Profiler::profileGetXMaskPrediction(const Set& pred_set)
{
m_getx_mask_prediction.add(pred_set.count());
}
void Profiler::profileGetSMaskPrediction(const Set& pred_set)
{
m_gets_mask_prediction.add(pred_set.count());
}
void Profiler::profileTrainingMask(const Set& pred_set)
{
m_explicit_training_mask.add(pred_set.count());
}
int64 Profiler::getTotalInstructionsExecuted() const
{
int64 sum = 1; // Starting at 1 allows us to avoid division by zero
for(int i=0; i < RubySystem::getNumberOfSequencers(); i++) {
sum += (g_system_ptr->getInstructionCount(i) - m_instructions_executed_at_start[i]);
}
return sum;
}
int64 Profiler::getTotalTransactionsExecuted() const
{
int64 sum = m_perProcEndTransaction.sum();
if (sum > 0) {
return sum;
} else {
return 1; // Avoid division by zero errors
}
}
void Profiler::rubyWatch(int id){
//int rn_g1 = 0;//SIMICS_get_register_number(id, "g1");
uint64 tr = 0;//SIMICS_read_register(id, rn_g1);
Address watch_address = Address(tr);
const int ID_SPACES = 3;
const int TIME_SPACES = 7;
(* debug_cout_ptr).flags(ios::right);
(* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " ";
(* debug_cout_ptr) << setw(ID_SPACES) << id << " "
<< "RUBY WATCH "
<< watch_address
<< endl;
if(!m_watch_address_list_ptr->exist(watch_address)){
m_watch_address_list_ptr->add(watch_address, 1);
}
}
bool Profiler::watchAddress(Address addr){
if (m_watch_address_list_ptr->exist(addr))
return true;
else
return false;
}
// For MemoryControl:
void Profiler::profileMemReq(string name, int bank) {
// printf("name is %s", name.c_str());
assert(m_memory_control_profilers.count(name) == 1);
m_memory_control_profilers[name] -> m_memReq++;
m_memory_control_profilers[name] -> m_memBankCount[bank]++;
}
void Profiler::profileMemBankBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankBusy++; }
void Profiler::profileMemBusBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBusBusy++; }
void Profiler::profileMemReadWriteBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memReadWriteBusy++; }
void Profiler::profileMemDataBusBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memDataBusBusy++; }
void Profiler::profileMemTfawBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memTfawBusy++; }
void Profiler::profileMemRefresh(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRefresh++; }
void Profiler::profileMemRead(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRead++; }
void Profiler::profileMemWrite(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWrite++; }
void Profiler::profileMemWaitCycles(string name, int cycles) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memWaitCycles += cycles; }
void Profiler::profileMemInputQ(string name, int cycles) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memInputQ += cycles; }
void Profiler::profileMemBankQ(string name, int cycles) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memBankQ += cycles; }
void Profiler::profileMemArbWait(string name, int cycles) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memArbWait += cycles; }
void Profiler::profileMemRandBusy(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memRandBusy++; }
void Profiler::profileMemNotOld(string name) { assert(m_memory_control_profilers.count(name) == 1); m_memory_control_profilers[name] -> m_memNotOld++; }