2007-10-08 02:48:36 +02:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2007 The Hewlett-Packard Development Company
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use of this software in source and binary forms,
|
|
|
|
* with or without modification, are permitted provided that the
|
|
|
|
* following conditions are met:
|
|
|
|
*
|
|
|
|
* The software must be used only for Non-Commercial Use which means any
|
|
|
|
* use which is NOT directed to receiving any direct monetary
|
|
|
|
* compensation for, or commercial advantage from such use. Illustrative
|
|
|
|
* examples of non-commercial use are academic research, personal study,
|
|
|
|
* teaching, education and corporate research & development.
|
|
|
|
* Illustrative examples of commercial use are distributing products for
|
|
|
|
* commercial advantage and providing services using the software for
|
|
|
|
* commercial advantage.
|
|
|
|
*
|
|
|
|
* If you wish to use this software or functionality therein that may be
|
|
|
|
* covered by patents for commercial use, please contact:
|
|
|
|
* Director of Intellectual Property Licensing
|
|
|
|
* Office of Strategy and Technology
|
|
|
|
* Hewlett-Packard Company
|
|
|
|
* 1501 Page Mill Road
|
|
|
|
* Palo Alto, California 94304
|
|
|
|
*
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer. Redistributions
|
|
|
|
* in binary form must reproduce the above copyright notice, this list of
|
|
|
|
* conditions and the following disclaimer in the documentation and/or
|
|
|
|
* other materials provided with the distribution. Neither the name of
|
|
|
|
* the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission. No right of
|
|
|
|
* sublicense is granted herewith. Derivatives of the software and
|
|
|
|
* output created using the software may be prepared, but only for
|
|
|
|
* Non-Commercial Uses. Derivatives of the software may be shared with
|
|
|
|
* others provided: (i) the others agree to abide by the list of
|
|
|
|
* conditions herein which includes the Non-Commercial Use restrictions;
|
|
|
|
* and (ii) such Derivatives of the software include the above copyright
|
|
|
|
* notice to acknowledge the contribution from this software where
|
|
|
|
* applicable, this list of conditions and the disclaimer below.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Authors: Gabe Black
|
|
|
|
*/
|
|
|
|
|
2008-10-10 12:50:18 +02:00
|
|
|
#include "arch/x86/bios/smbios.hh"
|
2008-10-11 08:39:53 +02:00
|
|
|
#include "arch/x86/bios/intelmp.hh"
|
2007-12-02 08:09:56 +01:00
|
|
|
#include "arch/x86/miscregs.hh"
|
2007-10-08 02:48:36 +02:00
|
|
|
#include "arch/x86/system.hh"
|
|
|
|
#include "arch/vtophys.hh"
|
2008-10-11 08:39:53 +02:00
|
|
|
#include "base/intmath.hh"
|
2007-10-08 02:48:36 +02:00
|
|
|
#include "base/loader/object_file.hh"
|
|
|
|
#include "base/loader/symtab.hh"
|
2008-10-11 08:39:53 +02:00
|
|
|
#include "base/remote_gdb.hh"
|
2007-10-08 02:48:36 +02:00
|
|
|
#include "base/trace.hh"
|
2007-12-02 08:09:56 +01:00
|
|
|
#include "cpu/thread_context.hh"
|
2007-10-08 02:48:36 +02:00
|
|
|
#include "mem/physical.hh"
|
|
|
|
#include "params/X86System.hh"
|
|
|
|
#include "sim/byteswap.hh"
|
|
|
|
|
|
|
|
|
2007-12-02 08:09:56 +01:00
|
|
|
using namespace LittleEndianGuest;
|
|
|
|
using namespace X86ISA;
|
2007-10-08 02:48:36 +02:00
|
|
|
|
2008-10-11 08:39:53 +02:00
|
|
|
X86System::X86System(Params *p) :
|
|
|
|
System(p), smbiosTable(p->smbios_table),
|
|
|
|
mpFloatingPointer(p->intel_mp_pointer),
|
2008-10-11 08:43:33 +02:00
|
|
|
mpConfigTable(p->intel_mp_table),
|
|
|
|
rsdp(p->acpi_description_table_pointer)
|
2008-10-10 12:50:51 +02:00
|
|
|
{}
|
2007-10-08 02:48:36 +02:00
|
|
|
|
2007-12-02 08:09:56 +01:00
|
|
|
void
|
|
|
|
X86System::startup()
|
|
|
|
{
|
|
|
|
System::startup();
|
|
|
|
// This is the boot strap processor (BSP). Initialize it to look like
|
|
|
|
// the boot loader has just turned control over to the 64 bit OS. We
|
|
|
|
// won't actually set up real mode or legacy protected mode descriptor
|
|
|
|
// tables because we aren't executing any code that would require
|
|
|
|
// them. We do, however toggle the control bits in the correct order
|
|
|
|
// while allowing consistency checks and the underlying mechansims
|
|
|
|
// just to be safe.
|
|
|
|
|
|
|
|
const int NumPDTs = 4;
|
|
|
|
|
|
|
|
const Addr PageMapLevel4 = 0x70000;
|
|
|
|
const Addr PageDirPtrTable = 0x71000;
|
|
|
|
const Addr PageDirTable[NumPDTs] =
|
|
|
|
{0x72000, 0x73000, 0x74000, 0x75000};
|
|
|
|
const Addr GDTBase = 0x76000;
|
|
|
|
|
|
|
|
const int PML4Bits = 9;
|
|
|
|
const int PDPTBits = 9;
|
|
|
|
const int PDTBits = 9;
|
|
|
|
|
|
|
|
// Get a port to write the page tables and descriptor tables.
|
|
|
|
FunctionalPort * physPort = threadContexts[0]->getPhysPort();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up the gdt.
|
|
|
|
*/
|
|
|
|
// Place holder at selector 0
|
|
|
|
uint64_t nullDescriptor = 0;
|
|
|
|
physPort->writeBlob(GDTBase, (uint8_t *)(&nullDescriptor), 8);
|
|
|
|
|
|
|
|
//64 bit code segment
|
|
|
|
SegDescriptor csDesc = 0;
|
|
|
|
csDesc.type.c = 0; // Not conforming
|
|
|
|
csDesc.dpl = 0; // Privelege level 0
|
|
|
|
csDesc.p = 1; // Present
|
|
|
|
csDesc.l = 1; // 64 bit
|
|
|
|
csDesc.d = 0; // default operand size
|
|
|
|
//Because we're dealing with a pointer and I don't think it's
|
|
|
|
//guaranteed that there isn't anything in a nonvirtual class between
|
|
|
|
//it's beginning in memory and it's actual data, we'll use an
|
|
|
|
//intermediary.
|
|
|
|
uint64_t csDescVal = csDesc;
|
|
|
|
physPort->writeBlob(GDTBase, (uint8_t *)(&csDescVal), 8);
|
|
|
|
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_TSG_BASE, GDTBase);
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_TSG_LIMIT, 0xF);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Identity map the first 4GB of memory. In order to map this region
|
|
|
|
* of memory in long mode, there needs to be one actual page map level
|
|
|
|
* 4 entry which points to one page directory pointer table which
|
|
|
|
* points to 4 different page directory tables which are full of two
|
|
|
|
* megabyte pages. All of the other entries in valid tables are set
|
|
|
|
* to indicate that they don't pertain to anything valid and will
|
|
|
|
* cause a fault if used.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Put valid values in all of the various table entries which indicate
|
|
|
|
// that those entries don't point to further tables or pages. Then
|
|
|
|
// set the values of those entries which are needed.
|
|
|
|
|
|
|
|
// Page Map Level 4
|
|
|
|
|
|
|
|
// read/write, user, not present
|
|
|
|
uint64_t pml4e = X86ISA::htog(0x6);
|
|
|
|
for (int offset = 0; offset < (1 << PML4Bits) * 8; offset += 8) {
|
|
|
|
physPort->writeBlob(PageMapLevel4 + offset, (uint8_t *)(&pml4e), 8);
|
|
|
|
}
|
|
|
|
// Point to the only PDPT
|
|
|
|
pml4e = X86ISA::htog(0x7 | PageDirPtrTable);
|
|
|
|
physPort->writeBlob(PageMapLevel4, (uint8_t *)(&pml4e), 8);
|
|
|
|
|
|
|
|
// Page Directory Pointer Table
|
|
|
|
|
|
|
|
// read/write, user, not present
|
|
|
|
uint64_t pdpe = X86ISA::htog(0x6);
|
|
|
|
for (int offset = 0; offset < (1 << PDPTBits) * 8; offset += 8) {
|
|
|
|
physPort->writeBlob(PageDirPtrTable + offset,
|
|
|
|
(uint8_t *)(&pdpe), 8);
|
|
|
|
}
|
|
|
|
// Point to the PDTs
|
|
|
|
for (int table = 0; table < NumPDTs; table++) {
|
|
|
|
pdpe = X86ISA::htog(0x7 | PageDirTable[table]);
|
|
|
|
physPort->writeBlob(PageDirPtrTable + table * 8,
|
|
|
|
(uint8_t *)(&pdpe), 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Page Directory Tables
|
|
|
|
|
|
|
|
Addr base = 0;
|
|
|
|
const Addr pageSize = 2 << 20;
|
|
|
|
for (int table = 0; table < NumPDTs; table++) {
|
|
|
|
for (int offset = 0; offset < (1 << PDTBits) * 8; offset += 8) {
|
|
|
|
// read/write, user, present, 4MB
|
|
|
|
uint64_t pdte = X86ISA::htog(0x87 | base);
|
|
|
|
physPort->writeBlob(PageDirTable[table] + offset,
|
|
|
|
(uint8_t *)(&pdte), 8);
|
|
|
|
base += pageSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Transition from real mode all the way up to Long mode
|
|
|
|
*/
|
|
|
|
CR0 cr0 = threadContexts[0]->readMiscRegNoEffect(MISCREG_CR0);
|
|
|
|
//Turn off paging.
|
|
|
|
cr0.pg = 0;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CR0, cr0);
|
|
|
|
//Turn on protected mode.
|
|
|
|
cr0.pe = 1;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CR0, cr0);
|
|
|
|
|
|
|
|
CR4 cr4 = threadContexts[0]->readMiscRegNoEffect(MISCREG_CR4);
|
|
|
|
//Turn on pae.
|
|
|
|
cr4.pae = 1;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CR4, cr4);
|
|
|
|
|
|
|
|
//Point to the page tables.
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CR3, PageMapLevel4);
|
|
|
|
|
|
|
|
Efer efer = threadContexts[0]->readMiscRegNoEffect(MISCREG_EFER);
|
|
|
|
//Enable long mode.
|
|
|
|
efer.lme = 1;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_EFER, efer);
|
|
|
|
|
|
|
|
//Activate long mode.
|
|
|
|
cr0.pg = 1;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CR0, cr0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Far jump into 64 bit mode.
|
|
|
|
*/
|
|
|
|
// Set the selector
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CS, 1);
|
|
|
|
// Manually set up the segment attributes. In the future when there's
|
|
|
|
// other existing functionality to do this, that could be used
|
|
|
|
// instead.
|
|
|
|
SegAttr csAttr = 0;
|
|
|
|
csAttr.writable = 0;
|
|
|
|
csAttr.readable = 1;
|
|
|
|
csAttr.expandDown = 0;
|
|
|
|
csAttr.dpl = 0;
|
|
|
|
csAttr.defaultSize = 0;
|
|
|
|
csAttr.longMode = 1;
|
|
|
|
threadContexts[0]->setMiscReg(MISCREG_CS_ATTR, csAttr);
|
|
|
|
|
|
|
|
threadContexts[0]->setPC(threadContexts[0]->getSystemPtr()->kernelEntry);
|
|
|
|
threadContexts[0]->setNextPC(threadContexts[0]->readPC());
|
|
|
|
|
|
|
|
// We should now be in long mode. Yay!
|
2008-01-23 21:28:54 +01:00
|
|
|
|
2008-10-10 12:50:51 +02:00
|
|
|
Addr ebdaPos = 0xF0000;
|
2008-10-11 08:39:53 +02:00
|
|
|
Addr fixed, table;
|
2008-10-10 12:50:51 +02:00
|
|
|
|
2008-01-23 21:28:54 +01:00
|
|
|
//Write out the SMBios/DMI table
|
2008-10-11 08:39:53 +02:00
|
|
|
writeOutSMBiosTable(ebdaPos, fixed, table);
|
|
|
|
ebdaPos += (fixed + table);
|
|
|
|
ebdaPos = roundUp(ebdaPos, 16);
|
|
|
|
|
|
|
|
//Write out the Intel MP Specification configuration table
|
|
|
|
writeOutMPTable(ebdaPos, fixed, table);
|
|
|
|
ebdaPos += (fixed + table);
|
2008-01-23 21:28:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2008-10-10 12:50:51 +02:00
|
|
|
X86System::writeOutSMBiosTable(Addr header,
|
|
|
|
Addr &headerSize, Addr &structSize, Addr table)
|
2008-01-23 21:28:54 +01:00
|
|
|
{
|
|
|
|
// Get a port to write the table and header to memory.
|
|
|
|
FunctionalPort * physPort = threadContexts[0]->getPhysPort();
|
|
|
|
|
|
|
|
// If the table location isn't specified, just put it after the header.
|
|
|
|
// The header size as of the 2.5 SMBios specification is 0x1F bytes
|
2008-10-10 12:50:51 +02:00
|
|
|
if (!table)
|
|
|
|
table = header + 0x1F;
|
|
|
|
smbiosTable->setTableAddr(table);
|
|
|
|
|
|
|
|
smbiosTable->writeOut(physPort, header, headerSize, structSize);
|
2008-01-23 21:28:54 +01:00
|
|
|
|
2008-10-10 12:50:51 +02:00
|
|
|
// Do some bounds checking to make sure we at least didn't step on
|
|
|
|
// ourselves.
|
|
|
|
assert(header > table || header + headerSize <= table);
|
|
|
|
assert(table > header || table + structSize <= header);
|
2007-12-02 08:09:56 +01:00
|
|
|
}
|
|
|
|
|
2008-10-11 08:39:53 +02:00
|
|
|
void
|
|
|
|
X86System::writeOutMPTable(Addr fp,
|
|
|
|
Addr &fpSize, Addr &tableSize, Addr table)
|
|
|
|
{
|
|
|
|
// Get a port to write the table and header to memory.
|
|
|
|
FunctionalPort * physPort = threadContexts[0]->getPhysPort();
|
|
|
|
|
|
|
|
// If the table location isn't specified and it exists, just put
|
|
|
|
// it after the floating pointer. The fp size as of the 1.4 Intel MP
|
|
|
|
// specification is 0x10 bytes.
|
|
|
|
if (mpConfigTable) {
|
|
|
|
if (!table)
|
|
|
|
table = fp + 0x10;
|
|
|
|
mpFloatingPointer->setTableAddr(table);
|
|
|
|
}
|
|
|
|
|
|
|
|
fpSize = mpFloatingPointer->writeOut(physPort, fp);
|
|
|
|
if (mpConfigTable)
|
|
|
|
tableSize = mpConfigTable->writeOut(physPort, table);
|
|
|
|
else
|
|
|
|
tableSize = 0;
|
|
|
|
|
|
|
|
// Do some bounds checking to make sure we at least didn't step on
|
|
|
|
// ourselves and the fp structure was the size we thought it was.
|
|
|
|
assert(fp > table || fp + fpSize <= table);
|
|
|
|
assert(table > fp || table + tableSize <= fp);
|
|
|
|
assert(fpSize == 0x10);
|
|
|
|
}
|
|
|
|
|
2008-01-23 21:28:54 +01:00
|
|
|
|
2007-10-08 02:48:36 +02:00
|
|
|
X86System::~X86System()
|
|
|
|
{
|
2008-01-23 21:28:54 +01:00
|
|
|
delete smbiosTable;
|
2007-10-08 02:48:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
X86System::serialize(std::ostream &os)
|
|
|
|
{
|
|
|
|
System::serialize(os);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
X86System::unserialize(Checkpoint *cp, const std::string §ion)
|
|
|
|
{
|
|
|
|
System::unserialize(cp,section);
|
|
|
|
}
|
|
|
|
|
|
|
|
X86System *
|
|
|
|
X86SystemParams::create()
|
|
|
|
{
|
|
|
|
return new X86System(this);
|
|
|
|
}
|