gem5/ext/dsent/model/std_cells/LATQ.cc

402 lines
20 KiB
C++
Raw Normal View History

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/LATQ.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::ceil;
using std::max;
using std::min;
LATQ::LATQ(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
LATQ::~LATQ()
{}
void LATQ::initProperties()
{
return;
}
void LATQ::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("D");
createInputPort("G");
createOutputPort("Q");
createLoad("D_Cap");
createLoad("G_Cap");
createDelay("D_to_Q_delay");
createDelay("G_to_Q_delay");
createDriver("Q_Ron", true);
ElectricalLoad* d_cap = getLoad("D_Cap");
ElectricalLoad* g_cap = getLoad("G_Cap");
ElectricalDelay* d_to_q_delay = getDelay("D_to_Q_delay");
ElectricalDelay* g_to_q_delay = getDelay("G_to_Q_delay");
ElectricalDriver* q_ron = getDriver("Q_Ron");
getNet("D")->addDownstreamNode(d_cap);
getNet("G")->addDownstreamNode(g_cap);
d_cap->addDownstreamNode(d_to_q_delay);
g_cap->addDownstreamNode(g_to_q_delay);
g_to_q_delay->addDownstreamNode(q_ron);
q_ron->addDownstreamNode(getNet("Q"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
// Create G Event Energy Result
createElectricalEventAtomicResult("G");
// Create DFF Event Energy Result
createElectricalEventAtomicResult("LATD");
createElectricalEventAtomicResult("LATQ");
// Create Idle event for leakage
// G pin is assumed to be on all the time
//createElectricalEventAtomicResult("Idle");
getEventInfo("Idle")->setStaticTransitionInfos();
return;
}
void LATQ::updateModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "LATQ_X" + (String) drive_strength;
// Get timing parameters
getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D"));
getLoad("G_Cap")->setLoadCap(cache->get(cell_name + "->Cap->G"));
getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q"));
getDelay("G_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->G_to_Q"));
getDelay("D_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->D_to_Q"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
return;
}
void LATQ::evaluateModel()
{
return;
}
void LATQ::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "LATQ_X" + (String) drive_strength;
// Propagate the transition info and get P_D, P_M, and P_Q
propagateTransitionInfo();
double P_D = getInputPort("D")->getTransitionInfo().getProbability1();
double P_G = getInputPort("G")->getTransitionInfo().getProbability1();
double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1();
double G_num_trans_01 = getInputPort("G")->getTransitionInfo().getNumberTransitions01();
double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01();
double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!D!G!Q") * (1 - P_D) * (1 - P_G) * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->!D!GQ") * (1 - P_D) * (1 - P_G) * P_Q;
leakage += cache->get(cell_name + "->Leakage->!DG!Q") * (1 - P_D) * P_G * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->D!G!Q") * P_D * (1 - P_G) * (1 - P_Q);
leakage += cache->get(cell_name + "->Leakage->D!GQ") * P_D * (1 - P_G) * P_Q;
leakage += cache->get(cell_name + "->Leakage->DGQ") * P_D * P_G * P_Q;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double g_b_cap = cache->get(cell_name + "->Cap->G_b");
double d_b_cap = cache->get(cell_name + "->Cap->D_b");
double q_i_cap = cache->get(cell_name + "->Cap->Q_i");
double q_b_cap = cache->get(cell_name + "->Cap->Q_b");
double q_cap = cache->get(cell_name + "->Cap->Q");
double q_load_cap = getNet("Q")->getTotalDownstreamCap();
// Calculate G Event energy
double g_event_energy = 0.0;
g_event_energy += (g_b_cap) * G_num_trans_01;
g_event_energy *= vdd * vdd;
getEventResult("G")->setValue(g_event_energy);
// Calculate LATD Event energy
double latd_event_energy = 0.0;
latd_event_energy += (d_b_cap) * D_num_trans_01;
latd_event_energy *= vdd * vdd;
getEventResult("LATD")->setValue(latd_event_energy);
// Calculate LATQ Event energy
double latq_event_energy = 0.0;
latq_event_energy += (q_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01;
latq_event_energy *= vdd * vdd;
getEventResult("LATQ")->setValue(latq_event_energy);
return;
}
void LATQ::propagateTransitionInfo()
{
const TransitionInfo& trans_G = getInputPort("G")->getTransitionInfo();
const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo();
double G_num_trans_01 = trans_G.getNumberTransitions01();
double G_num_trans_10 = G_num_trans_01;
double G_num_trans_00 = trans_G.getNumberTransitions00();
double D_freq_mult = trans_D.getFrequencyMultiplier();
// If the latch is sampling just as fast or faster than input data signal
// Then it can capture all transitions (though it should be normalized to clock)
if((G_num_trans_10 + G_num_trans_00) >= D_freq_mult)
{
const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(G_num_trans_10 + G_num_trans_00);
getOutputPort("Q")->setTransitionInfo(trans_Q);
}
// If the latch is sampling slower than the input data signal, then input
// will look like they transition more
else
{
// Calculate scale ratio
double scale_ratio = (G_num_trans_10 + G_num_trans_00) / D_freq_mult;
// 00 and 11 transitions become fewer
double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11());
double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio;
double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio;
// 01 and 10 transitions become more frequent
double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff;
// Create final transition info, remembering to apply scaling ratio to normalize to G
const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio,
D_scaled_num_trans_10 * scale_ratio,
D_scaled_num_trans_11 * scale_ratio);
getOutputPort("Q")->setTransitionInfo(trans_Q);
}
return;
}
// Creates the standard cell, characterizes and abstracts away the details
void LATQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Standard cell cache string
String cell_name = "LATQ_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Now actually build the full standard cell model
createInputPort("D");
createInputPort("G");
createOutputPort("Q");
createNet("D_b");
createNet("Q_i");
createNet("Q_b");
createNet("G_b");
// Adds macros
CellMacros::addInverter(this, "INV1", false, true, "D", "D_b");
CellMacros::addInverter(this, "INV2", false, true, "Q_i", "Q_b");
CellMacros::addInverter(this, "INV3", false, true, "Q_b", "Q");
CellMacros::addInverter(this, "INV4", false, true, "G", "G_b");
CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "G", "G_b", "Q_i"); //trace timing through A->ZN path only
CellMacros::addTristate(this, "INVZ2", false, false, false, false, "Q_b", "G_b", "G", "Q_i"); //don't trace timing through the feedback path
// Update macros
CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125);
CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5);
CellMacros::updateInverter(this, "INV3", drive_strength_ * 1.0);
CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.125);
CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5);
CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
cache->set(cell_name + "->Area->Active", area);
cache->set(cell_name + "->Area->Metal1Wire", area); //Cover-block m1 area
Log::printLine(cell_name + "->Area->Active=" + (String) area);
Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
// Cache leakage power results (for every single signal combination)
double leakage_000 = 0; //!D, !G, !Q
double leakage_001 = 0; //!D, !G, Q
double leakage_010 = 0; //!D, G, !Q
double leakage_100 = 0; //D, !G, !Q
double leakage_101 = 0; //D, !G, Q
double leakage_111 = 0; //D, G, Q
//This is so painful...
leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_111 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
cache->set(cell_name + "->Leakage->!D!G!Q", leakage_000);
cache->set(cell_name + "->Leakage->!D!GQ", leakage_001);
cache->set(cell_name + "->Leakage->!DG!Q", leakage_010);
cache->set(cell_name + "->Leakage->D!G!Q", leakage_100);
cache->set(cell_name + "->Leakage->D!GQ", leakage_101);
cache->set(cell_name + "->Leakage->DGQ", leakage_111);
Log::printLine(cell_name + "->Leakage->!D!G!Q=" + (String) leakage_000);
Log::printLine(cell_name + "->Leakage->!D!GQ=" + (String) leakage_001);
Log::printLine(cell_name + "->Leakage->!DG!Q=" + (String) leakage_010);
Log::printLine(cell_name + "->Leakage->D!G!Q=" + (String) leakage_100);
Log::printLine(cell_name + "->Leakage->D!GQ=" + (String) leakage_101);
Log::printLine(cell_name + "->Leakage->DGQ=" + (String) leakage_111);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double d_cap = getNet("D")->getTotalDownstreamCap();
double d_b_cap = getNet("D_b")->getTotalDownstreamCap();
double q_i_cap = getNet("Q_i")->getTotalDownstreamCap();
double q_b_cap = getNet("Q_b")->getTotalDownstreamCap();
double q_cap = getNet("Q")->getTotalDownstreamCap();
double g_cap = getNet("G")->getTotalDownstreamCap();
double g_b_cap = getNet("G_b")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->D", d_cap);
cache->set(cell_name + "->Cap->D_b", d_b_cap);
cache->set(cell_name + "->Cap->Q_i", q_i_cap);
cache->set(cell_name + "->Cap->Q_b", q_b_cap);
cache->set(cell_name + "->Cap->Q", q_cap);
cache->set(cell_name + "->Cap->G", g_cap);
cache->set(cell_name + "->Cap->G_b", g_b_cap);
Log::printLine(cell_name + "->Cap->D=" + (String) d_cap);
Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap);
Log::printLine(cell_name + "->Cap->Q_i=" + (String) q_i_cap);
Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap);
Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap);
Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
Log::printLine(cell_name + "->Cap->G_b=" + (String) g_b_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
double q_ron = getDriver("INV3_RonZN")->getOutputRes();
double d_to_q_delay = getDriver("INV1_RonZN")->calculateDelay() +
getDriver("INVZ1_RonZN")->calculateDelay() +
getDriver("INV2_RonZN")->calculateDelay() +
getDriver("INV3_RonZN")->calculateDelay();
double g_to_q_delay = getDriver("INV4_RonZN")->calculateDelay() +
getDriver("INVZ1_RonZN")->calculateDelay() +
getDriver("INV2_RonZN")->calculateDelay() +
getDriver("INV3_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Q", q_ron);
cache->set(cell_name + "->Delay->D_to_Q", d_to_q_delay);
cache->set(cell_name + "->Delay->G_to_Q", g_to_q_delay);
Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron);
Log::printLine(cell_name + "->Delay->D_to_Q=" + (String) d_to_q_delay);
Log::printLine(cell_name + "->Delay->G_to_Q=" + (String) g_to_q_delay);
return;
// --------------------------------------------------------------------
}
} // namespace DSENT