gem5/ext/dsent/model/std_cells/ADDF.cc

693 lines
39 KiB
C++
Raw Normal View History

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/ADDF.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/EventInfo.h"
#include "model/TransitionInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::ceil;
using std::max;
ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
ADDF::~ADDF()
{}
void ADDF::initProperties()
{
return;
}
void ADDF::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("A");
createInputPort("B");
createInputPort("CI");
createOutputPort("S");
createOutputPort("CO");
createLoad("A_Cap");
createLoad("B_Cap");
createLoad("CI_Cap");
createDelay("A_to_S_delay");
createDelay("B_to_S_delay");
createDelay("CI_to_S_delay");
createDelay("A_to_CO_delay");
createDelay("B_to_CO_delay");
createDelay("CI_to_CO_delay");
createDriver("S_Ron", true);
createDriver("CO_Ron", true);
ElectricalLoad* a_cap = getLoad("A_Cap");
ElectricalLoad* b_cap = getLoad("B_Cap");
ElectricalLoad* ci_cap = getLoad("CI_Cap");
ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay");
ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay");
ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay");
ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay");
ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay");
ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay");
ElectricalDriver* s_ron = getDriver("S_Ron");
ElectricalDriver* co_ron = getDriver("CO_Ron");
getNet("A")->addDownstreamNode(a_cap);
getNet("B")->addDownstreamNode(b_cap);
getNet("CI")->addDownstreamNode(ci_cap);
a_cap->addDownstreamNode(a_to_s_delay);
b_cap->addDownstreamNode(b_to_s_delay);
ci_cap->addDownstreamNode(ci_to_s_delay);
a_cap->addDownstreamNode(a_to_co_delay);
b_cap->addDownstreamNode(b_to_co_delay);
ci_cap->addDownstreamNode(ci_to_co_delay);
a_to_s_delay->addDownstreamNode(s_ron);
b_to_s_delay->addDownstreamNode(s_ron);
ci_to_s_delay->addDownstreamNode(s_ron);
a_to_co_delay->addDownstreamNode(co_ron);
b_to_co_delay->addDownstreamNode(co_ron);
ci_to_co_delay->addDownstreamNode(co_ron);
s_ron->addDownstreamNode(getNet("S"));
co_ron->addDownstreamNode(getNet("CO"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
// Create ADDF Event Energy Result
createElectricalEventAtomicResult("ADDF");
getEventInfo("Idle")->setStaticTransitionInfos();
return;
}
void ADDF::updateModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "ADDF_X" + (String) drive_strength;
// Get timing parameters
getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI"));
getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S"));
getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S"));
getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S"));
getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO"));
getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO"));
getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO"));
getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S"));
getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
return;
}
void ADDF::evaluateModel()
{
return;
}
void ADDF::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "ADDF_X" + (String) drive_strength;
// Propagate the transition info and get the 0->1 transition count
propagateTransitionInfo();
double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1();
double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01();
double P_num_trans_01 = m_trans_P_.getNumberTransitions01();
double G_num_trans_01 = m_trans_G_.getNumberTransitions01();
double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01();
double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01();
double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI);
leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI;
leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI);
leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI;
leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI);
leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI;
leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI);
leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double a_b_cap = cache->get(cell_name + "->Cap->A_b");
double b_b_cap = cache->get(cell_name + "->Cap->B_b");
double ci_b_cap = cache->get(cell_name + "->Cap->CI_b");
double p_cap = cache->get(cell_name + "->Cap->P");
double p_b_cap = cache->get(cell_name + "->Cap->P_b");
double s_cap = cache->get(cell_name + "->Cap->S");
double cp_cap = cache->get(cell_name + "->Cap->CP");
double g_cap = cache->get(cell_name + "->Cap->G");
double co_cap = cache->get(cell_name + "->Cap->CO");
double s_load_cap = getNet("S")->getTotalDownstreamCap();
double co_load_cap = getNet("CO")->getTotalDownstreamCap();
// Calculate ADDF Event energy
double addf_event_energy = 0.0;
addf_event_energy += a_b_cap * A_num_trans_01;
addf_event_energy += b_b_cap * B_num_trans_01;
addf_event_energy += ci_b_cap * CI_num_trans_01;
addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01;
addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01;
addf_event_energy += cp_cap * CP_num_trans_01;
addf_event_energy += g_cap * G_num_trans_01;
addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01;
addf_event_energy *= vdd * vdd;
getEventResult("ADDF")->setValue(addf_event_energy);
return;
}
void ADDF::propagateTransitionInfo()
{
const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo();
double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier());
const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult);
double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
double A_prob_10 = A_prob_01;
double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
double B_prob_10 = B_prob_01;
double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult;
double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult;
double CI_prob_10 = CI_prob_01;
double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult;
// Set P transition info
double P_prob_00 = A_prob_00 * B_prob_00 +
A_prob_01 * B_prob_01 +
A_prob_10 * B_prob_10 +
A_prob_11 * B_prob_11;
double P_prob_01 = A_prob_00 * B_prob_01 +
A_prob_01 * B_prob_00 +
A_prob_10 * B_prob_11 +
A_prob_11 * B_prob_10;
double P_prob_10 = P_prob_01;
double P_prob_11 = A_prob_00 * B_prob_11 +
A_prob_01 * B_prob_10 +
A_prob_10 * B_prob_01 +
A_prob_11 * B_prob_00;
// Set G transition info
double G_prob_00 = A_prob_11 * B_prob_11;
double G_prob_01 = A_prob_11 * B_prob_10 +
A_prob_10 * (B_prob_11 + B_prob_10);
double G_prob_10 = G_prob_01;
double G_prob_11 = A_prob_00 +
A_prob_01 * (B_prob_00 + B_prob_10) +
A_prob_10 * (B_prob_00 + B_prob_01) +
A_prob_11 * B_prob_00;
// Set CP transition info
double CP_prob_00 = P_prob_11 * CI_prob_11;
double CP_prob_01 = P_prob_11 * CI_prob_10 +
P_prob_10 * (CI_prob_11 + CI_prob_10);
double CP_prob_10 = CP_prob_01;
double CP_prob_11 = P_prob_00 +
P_prob_01 * (CI_prob_00 + CI_prob_10) +
P_prob_10 * (CI_prob_00 + CI_prob_01) +
P_prob_11 * CI_prob_00;
// Set S transition info
double S_prob_00 = P_prob_00 * CI_prob_00 +
P_prob_01 * CI_prob_01 +
P_prob_10 * CI_prob_10 +
P_prob_11 * CI_prob_11;
double S_prob_01 = P_prob_00 * CI_prob_01 +
P_prob_01 * CI_prob_00 +
P_prob_10 * CI_prob_11 +
P_prob_11 * CI_prob_10;
double S_prob_11 = P_prob_00 * CI_prob_11 +
P_prob_01 * CI_prob_10 +
P_prob_10 * CI_prob_01 +
P_prob_11 * CI_prob_00;
// Set CO transition info
double CO_prob_00 = G_prob_11 * CP_prob_11;
double CO_prob_01 = G_prob_11 * CP_prob_10 +
G_prob_10 * (CP_prob_11 + CP_prob_10);
double CO_prob_11 = G_prob_00 +
G_prob_01 * (CP_prob_00 + CP_prob_10) +
G_prob_10 * (CP_prob_00 + CP_prob_01) +
G_prob_11 * CP_prob_00;
m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult);
m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult);
m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult);
// Check that probabilities add up to 1.0 with some finite tolerance
ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0),
"[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
(String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!");
// Check that probabilities add up to 1.0 with some finite tolerance
ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0),
"[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
(String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!");
// Turn probability of transitions per cycle into number of transitions per time unit
TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult);
getOutputPort("S")->setTransitionInfo(trans_S);
TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult);
getOutputPort("CO")->setTransitionInfo(trans_CO);
return;
}
// Creates the standard cell, characterizes and abstracts away the details
void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Standard cell cache string
String cell_name = "ADDF_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Now actually build the full standard cell model
createInputPort("A");
createInputPort("B");
createInputPort("CI");
createOutputPort("S");
createOutputPort("CO");
createNet("A_b");
createNet("B_b");
createNet("CI_b");
createNet("P");
createNet("P_b");
createNet("G"); //actually G_b since it is NAND'ed
createNet("CP"); //actually (CP)_b since it is NAND'ed
// Adds macros
CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b");
CellMacros::addInverter(this, "INV4", false, true, "P", "P_b");
CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P");
CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P");
CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S");
CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S");
CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP");
CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G");
CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO");
// I have no idea how to size each of the parts haha
CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250);
CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250);
CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500);
CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250);
CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250);
CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500);
CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500);
CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500);
CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500);
CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble();
cache->set(cell_name + "->Area->Active", area);
cache->set(cell_name + "->Area->Metal1Wire", area);
Log::printLine(cell_name + "->Area->Active=" + (String) area);
Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
// Cache leakage power results (for every single signal combination)
double leakage_000 = 0; //!A, !B, !CI
double leakage_001 = 0; //!A, !B, CI
double leakage_010 = 0; //!A, B, !CI
double leakage_011 = 0; //!A, B, CI
double leakage_100 = 0; //A, !B, !CI
double leakage_101 = 0; //A, !B, CI
double leakage_110 = 0; //A, B, !CI
double leakage_111 = 0; //A, B, CI
//This is so painful...
leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000);
cache->set(cell_name + "->Leakage->!A!BCI", leakage_001);
cache->set(cell_name + "->Leakage->!AB!CI", leakage_010);
cache->set(cell_name + "->Leakage->!ABCI", leakage_011);
cache->set(cell_name + "->Leakage->A!B!CI", leakage_100);
cache->set(cell_name + "->Leakage->A!BCI", leakage_101);
cache->set(cell_name + "->Leakage->AB!CI", leakage_110);
cache->set(cell_name + "->Leakage->ABCI", leakage_111);
Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000);
Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001);
Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010);
Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011);
Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100);
Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101);
Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110);
Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111);
// --------------------------------------------------------------------
/*
// Cache event energy results
double event_a_flip = 0.0;
event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
cache->set(cell_name + "->Event_A_Flip", event_a_flip);
Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
double event_b_flip = 0.0;
event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
cache->set(cell_name + "->Event_B_Flip", event_b_flip);
Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
double event_ci_flip = 0.0;
event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble();
event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble();
event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble();
event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble();
cache->set(cell_name + "->Event_CI_Flip", event_ci_flip);
Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip);
double event_p_flip = 0.0;
event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble();
event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble();
cache->set(cell_name + "->Event_P_Flip", event_p_flip);
Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip);
double event_s_flip = 0.0;
event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble();
event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble();
cache->set(cell_name + "->Event_S_Flip", event_s_flip);
Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip);
double event_cp_flip = 0.0;
event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble();
event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
cache->set(cell_name + "->Event_CP_Flip", event_cp_flip);
Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip);
double event_g_flip = 0.0;
event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble();
event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
cache->set(cell_name + "->Event_G_Flip", event_g_flip);
Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip);
double event_co_flip = 0.0;
event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble();
cache->set(cell_name + "->Event_CO_Flip", event_co_flip);
Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip);
*/
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double a_cap = getNet("A")->getTotalDownstreamCap();
double b_cap = getNet("B")->getTotalDownstreamCap();
double ci_cap = getNet("CI")->getTotalDownstreamCap();
double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap();
double p_cap = getNet("P")->getTotalDownstreamCap();
double p_b_cap = getNet("P_b")->getTotalDownstreamCap();
double s_cap = getNet("S")->getTotalDownstreamCap();
double cp_cap = getNet("CP")->getTotalDownstreamCap();
double g_cap = getNet("G")->getTotalDownstreamCap();
double co_cap = getNet("CO")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->A", a_cap);
cache->set(cell_name + "->Cap->B", b_cap);
cache->set(cell_name + "->Cap->CI", ci_cap);
cache->set(cell_name + "->Cap->A_b", a_b_cap);
cache->set(cell_name + "->Cap->B_b", b_b_cap);
cache->set(cell_name + "->Cap->CI_b", ci_b_cap);
cache->set(cell_name + "->Cap->P", p_cap);
cache->set(cell_name + "->Cap->P_b", p_b_cap);
cache->set(cell_name + "->Cap->S", s_cap);
cache->set(cell_name + "->Cap->CP", cp_cap);
cache->set(cell_name + "->Cap->G", g_cap);
cache->set(cell_name + "->Cap->CO", co_cap);
Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap);
Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap);
Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap);
Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap);
Log::printLine(cell_name + "->Cap->P=" + (String) p_cap);
Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap);
Log::printLine(cell_name + "->Cap->S=" + (String) s_cap);
Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap);
Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
// Build abstracted timing model
double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2;
double co_ron = getDriver("NAND3_RonZN")->getOutputRes();
double a_to_s_delay = 0.0;
a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay();
a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
double b_to_s_delay = 0.0;
b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
double ci_to_s_delay = 0.0;
ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay();
ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay());
double a_to_co_delay = 0.0;
a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
getDriver("INV1_RonZN")->calculateDelay() + //Carry propagate path
max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) +
getDriver("NAND1_RonZN")->calculateDelay());
a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
double b_to_co_delay = 0.0;
b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
max(getDriver("INVZ1_RonZN")->calculateDelay(), //Carry propagate path
getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) +
getDriver("NAND1_RonZN")->calculateDelay());
b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
double ci_to_co_delay = 0.0;
ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay();
ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->S", s_ron);
cache->set(cell_name + "->DriveRes->CO", co_ron);
cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay);
cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay);
cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay);
cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay);
cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay);
cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay);
Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron);
Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron);
Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay);
Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay);
Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay);
Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay);
Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay);
Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay);
// --------------------------------------------------------------------
return;
}
} // namespace DSENT