gem5/ext/dsent/model/optical/ThrottledLaserSource.cc

159 lines
6.4 KiB
C++
Raw Normal View History

/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical/ThrottledLaserSource.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical_graph/OpticalWavelength.h"
#include "model/optical_graph/OpticalLaser.h"
#include "model/optical_graph/OpticalGraph.h"
namespace DSENT
{
ThrottledLaserSource::ThrottledLaserSource(const String& instance_name_, const TechModel* tech_model_)
: OpticalModel(instance_name_, tech_model_), m_wavelength_(NULL)
{
initParameters();
initProperties();
}
ThrottledLaserSource::~ThrottledLaserSource()
{
if (m_wavelength_ != NULL) delete m_wavelength_;
}
void ThrottledLaserSource::initParameters()
{
addParameterName("OutStart");
addParameterName("OutEnd");
addParameterName("MaxDetectors");
addParameterName("MinDetectors");
return;
}
void ThrottledLaserSource::initProperties()
{
addPropertyName("OptUtil", 1.0);
addPropertyName("LaserEventTime");
return;
}
void ThrottledLaserSource::constructModel()
{
// Get parameters
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
unsigned int max_detectors = getParameter("MaxDetectors").toUInt();
unsigned int min_detectors = getParameter("MinDetectors").toUInt();
// Create electrical input port for laser control
createInputPort( "LaserEnable");
// Create Area result
addAreaResult(new AtomicResult("Photonic"));
// Create event result for each detector number possibility
for (unsigned int i = min_detectors; i <= max_detectors; ++i)
{
createElectricalEventAtomicResult("Laser" + (String) i);
getEventInfo("Laser" + (String) i)->setTransitionInfo("LaserEnable", TransitionInfo(0.0, 1.0, 0.0));
}
// Create optical ports
createOpticalOutputPort( "Out", laser_wavelengths);
// Create the filter
createLaser( "Laser", laser_wavelengths);
OpticalLaser* laser = getLaser("Laser");
// Connect the laser to the output
laser->addDownstreamNode(getWaveguide("Out"));
}
void ThrottledLaserSource::updateModel()
{
// Get properties
double laser_efficiency = getTechModel()->get("Laser->CW->Efficiency").toDouble();
double laser_area = getTechModel()->get("Laser->CW->Area").toDouble();
double laser_diode_loss = getTechModel()->get("Laser->CW->LaserDiodeLoss");
// Get parameters
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
unsigned int number_wavelengths = laser_wavelengths.second - laser_wavelengths.first + 1;
// Update losses
OpticalLaser* laser = getLaser("Laser");
laser->setLoss(laser_diode_loss);
laser->setEfficiency(laser_efficiency);
// Update area
getAreaResult("Photonic")->setValue(laser_area * number_wavelengths);
}
void ThrottledLaserSource::evaluateModel()
{
// Get parameters
unsigned int max_detectors = getParameter("MaxDetectors");
WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd"));
// Get properties
double opt_util = getProperty("OptUtil");
// Create optical graph object
OpticalGraph* optical_graph = new OpticalGraph("LaserTrace", this);
// Ask optical graph object to perform power optimization
bool success = optical_graph->performPowerOpt(getLaser("Laser"), laser_wavelengths, max_detectors, opt_util);
if (!success)
{
Log::printLine(std::cerr, "[Warning] " + getInstanceName() +
" -> Wavelengths contains data paths with no possible modulator configurations!");
}
// Trace the wavelengths the laser is outputting to find the output
// power needed by the laser
if (m_wavelength_ != NULL) delete m_wavelength_;
m_wavelength_ = optical_graph->traceWavelength(laser_wavelengths, getLaser("Laser"));
delete optical_graph;
}
void ThrottledLaserSource::useModel()
{
// Get parameters
unsigned int max_detectors = getParameter("MaxDetectors");
unsigned int min_detectors = getParameter("MinDetectors");
// Get properties
double laser_event_time = getProperty("LaserEventTime");
// Get laser enable information
const TransitionInfo& enable_info = getInputPort("LaserEnable")->getTransitionInfo();
for (unsigned int i = min_detectors; i <= max_detectors; ++i)
{
// Calculate the power needed by the wavelength
double laser_power = m_wavelength_->getLaserPower(i);
// Calculate the laser event power by calculating the amount
// of time the laser is on
getEventResult("Laser" + (String) i)->setValue(laser_power * laser_event_time *
enable_info.getFrequencyMultiplier() * enable_info.getProbability1());
}
}
} // namespace DSENT