gem5/src/arch/arm/process.cc

350 lines
12 KiB
C++
Raw Normal View History

2009-04-06 03:53:15 +02:00
/*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
*/
#include "arch/arm/isa_traits.hh"
#include "arch/arm/process.hh"
#include "arch/arm/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "cpu/thread_context.hh"
#include "mem/page_table.hh"
#include "mem/translating_port.hh"
#include "sim/process_impl.hh"
#include "sim/system.hh"
using namespace std;
using namespace ArmISA;
ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
ObjectFile::Arch _arch)
: LiveProcess(params, objFile), arch(_arch)
2009-04-06 03:53:15 +02:00
{
stack_base = 0xbf000000L;
2009-04-06 03:53:15 +02:00
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up break point (Top of Heap)
brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(brk_point, VMPageSize);
// Set up region for mmaps. For now, start at bottom of kuseg space.
mmap_start = mmap_end = 0x70000000L;
}
void
ArmLiveProcess::startup()
{
argsInit(MachineBytes, VMPageSize);
}
void
ArmLiveProcess::copyStringArray32(std::vector<std::string> &strings,
Addr array_ptr, Addr data_ptr,
TranslatingPort* memPort)
{
Addr data_ptr_swap;
for (int i = 0; i < strings.size(); ++i) {
data_ptr_swap = htog(data_ptr);
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap,
sizeof(uint32_t));
memPort->writeString(data_ptr, strings[i].c_str());
array_ptr += sizeof(uint32_t);
data_ptr += strings[i].size() + 1;
}
// add NULL terminator
data_ptr = 0;
memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(uint32_t));
}
void
ArmLiveProcess::argsInit(int intSize, int pageSize)
{
typedef AuxVector<uint32_t> auxv_t;
std::vector<auxv_t> auxv;
string filename;
if (argv.size() < 1)
filename = "";
else
filename = argv[0];
//We want 16 byte alignment
uint64_t align = 16;
2009-04-06 03:53:15 +02:00
// Overloaded argsInit so that we can fine-tune for ARM architecture
Process::startup();
// load object file into target memory
objFile->loadSections(initVirtMem);
enum ArmCpuFeature {
Arm_Swp = 1 << 0,
Arm_Half = 1 << 1,
Arm_Thumb = 1 << 2,
Arm_26Bit = 1 << 3,
Arm_FastMult = 1 << 4,
Arm_Fpa = 1 << 5,
Arm_Vfp = 1 << 6,
Arm_Edsp = 1 << 7,
Arm_Java = 1 << 8,
Arm_Iwmmxt = 1 << 9,
Arm_Crunch = 1 << 10
};
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject) {
uint32_t features =
Arm_Swp |
Arm_Half |
Arm_Thumb |
// Arm_26Bit |
Arm_FastMult |
// Arm_Fpa |
Arm_Vfp |
Arm_Edsp |
Arm_Java |
// Arm_Iwmmxt |
// Arm_Crunch |
0;
//Bits which describe the system hardware capabilities
//XXX Figure out what these should be
auxv.push_back(auxv_t(M5_AT_HWCAP, features));
//The system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::VMPageSize));
//Frequency at which times() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
//This is the address of the elf "interpreter", It should be set
//to 0 for regular executables. It should be something else
//(not sure what) for dynamic libraries.
auxv.push_back(auxv_t(M5_AT_BASE, 0));
//XXX Figure out what this should be.
auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
//Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(M5_AT_SECURE, 0));
//The filename of the program
auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
//The string "v51" with unknown meaning
auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
2009-04-06 03:53:15 +02:00
}
//Figure out how big the initial stack nedes to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
string platform = "v51";
int platform_size = platform.size() + 1;
// The aux vectors are put on the stack in two groups. The first group are
// the vectors that are generated as the elf is loaded. The second group
// are the ones that were computed ahead of time and include the platform
// string.
int aux_data_size = filename.size() + 1;
2009-04-06 03:53:15 +02:00
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
2009-04-06 03:53:15 +02:00
int info_block_size =
sentry_size + env_data_size + arg_data_size +
aux_data_size + platform_size;
//Each auxilliary vector is two 4 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
//Figure out the size of the contents of the actual initial frame
int frame_size =
info_block_size +
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
//There needs to be padding after the auxiliary vector data so that the
//very bottom of the stack is aligned properly.
int partial_size = frame_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed = frame_size + aux_padding;
2009-04-06 03:53:15 +02:00
stack_min = stack_base - space_needed;
stack_min = roundDown(stack_min, align);
2009-04-06 03:53:15 +02:00
stack_size = stack_base - stack_min;
2009-04-06 03:53:15 +02:00
// map memory
pTable->allocate(roundDown(stack_min, pageSize),
roundUp(stack_size, pageSize));
2009-04-06 03:53:15 +02:00
// map out initial stack contents
uint32_t sentry_base = stack_base - sentry_size;
uint32_t aux_data_base = sentry_base - aux_data_size;
uint32_t env_data_base = aux_data_base - env_data_size;
uint32_t arg_data_base = env_data_base - arg_data_size;
uint32_t platform_base = arg_data_base - platform_size;
uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
uint32_t envp_array_base = auxv_array_base - envp_array_size;
uint32_t argv_array_base = envp_array_base - argv_array_size;
uint32_t argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - platform base\n", platform_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", stack_min);
2009-04-06 03:53:15 +02:00
// write contents to stack
// figure out argc
uint32_t argc = argv.size();
uint32_t guestArgc = ArmISA::htog(argc);
2009-04-06 03:53:15 +02:00
//Write out the sentry void *
uint32_t sentry_NULL = 0;
initVirtMem->writeBlob(sentry_base,
(uint8_t*)&sentry_NULL, sentry_size);
2009-04-06 03:53:15 +02:00
//Fix up the aux vectors which point to other data
for (int i = auxv.size() - 1; i >= 0; i--) {
if (auxv[i].a_type == M5_AT_PLATFORM) {
auxv[i].a_val = platform_base;
initVirtMem->writeString(platform_base, platform.c_str());
} else if (auxv[i].a_type == M5_AT_EXECFN) {
auxv[i].a_val = aux_data_base;
initVirtMem->writeString(aux_data_base, filename.c_str());
}
}
2009-04-06 03:53:15 +02:00
//Copy the aux stuff
for(int x = 0; x < auxv.size(); x++)
{
initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
//Write out the terminating zeroed auxilliary vector
const uint64_t zero = 0;
initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
(uint8_t*)&zero, 2 * intSize);
2009-04-06 03:53:15 +02:00
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
//Set the stack pointer register
tc->setIntReg(StackPointerReg, stack_min);
//A pointer to a function to run when the program exits. We'll set this
//to zero explicitly to make sure this isn't used.
tc->setIntReg(ArgumentReg0, 0);
//Set argument regs 1 and 2 to argv[0] and envp[0] respectively
if (argv.size() > 0) {
tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
argv[argv.size() - 1].size() - 1);
} else {
tc->setIntReg(ArgumentReg1, 0);
}
if (envp.size() > 0) {
tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
envp[envp.size() - 1].size() - 1);
} else {
tc->setIntReg(ArgumentReg2, 0);
}
2009-04-06 03:53:15 +02:00
Addr prog_entry = objFile->entryPoint();
if (arch == ObjectFile::Thumb)
prog_entry = (prog_entry & ~mask(1)) | (ULL(1) << PcTBitShift);
tc->setPC(prog_entry);
tc->setNextPC(prog_entry + sizeof(MachInst));
//Align the "stack_min" to a page boundary.
stack_min = roundDown(stack_min, pageSize);
}
ArmISA::IntReg
ArmLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 4);
return tc->readIntReg(ArgumentReg0 + i++);
2009-04-06 03:53:15 +02:00
}
void
ArmLiveProcess::setSyscallArg(ThreadContext *tc,
int i, ArmISA::IntReg val)
{
assert(i < 4);
tc->setIntReg(ArgumentReg0 + i, val);
}
void
ArmLiveProcess::setSyscallReturn(ThreadContext *tc,
SyscallReturn return_value)
{
tc->setIntReg(ReturnValueReg, return_value.value());
}