gem5/system/alpha/palcode/osfpal.s

5124 lines
132 KiB
ArmAsm
Raw Normal View History

2003-11-14 16:52:42 +01:00
// modified to use the Hudson style "impure.h" instead of ev5_impure.sdl
// since we don't have a mechanism to expand the data structures.... pb Nov/95
// build_fixed_image: not sure what means
// real_mm to be replaced during rewrite
// remove_save_state remove_restore_state can be remooved to save space ??
#include "ev5_defs.h"
#include "ev5_impure.h"
#include "ev5_alpha_defs.h"
#include "ev5_paldef.h"
#include "ev5_osfalpha_defs.h"
#include "fromHudsonMacros.h"
#include "fromHudsonOsf.h"
#include "dc21164FromGasSources.h"
#ifdef SIMOS
#define DEBUGSTORE(c) nop
#else
#define DEBUGSTORE(c) \
lda r13, c(zero) ; \
bsr r25, debugstore
#endif
#define DEBUG_EXC_ADDR()\
bsr r25, put_exc_addr; \
DEBUGSTORE(13) ; \
DEBUGSTORE(10)
#define egore 0
#define acore 0
#define beh_model 0
#define ev5_p2 1
#define ev5_p1 0
#define ldvpte_bug_fix 1
#define osf_chm_fix 0
// Do we want to do this?? pb
#define spe_fix 0
// Do we want to do this?? pb
#define build_fixed_image 0
#define ev5_pass2
#define enable_p4_fixups 0
#define osf_svmin 1
#define enable_physical_console 0
#define fill_err_hack 0
#define icflush_on_tbix 0
#define max_cpuid 1
#define perfmon_debug 0
#define rawhide_system 0
#define rax_mode 0
// This is the fix for the user-mode super page references causing the machine to crash.
#if (spe_fix == 1) && (build_fixed_image==1)
#define hw_rei_spe br r31, hw_rei_update_spe
#else
#define hw_rei_spe hw_rei
#endif
// redefine a few of the distribution-code names to match the Hudson gas names.
// opcodes
#define ldqp ldq_p
#define stqp stq_p
#define ldlp ldl_p
#define stlp stl_p
#define r0 $0
#define r1 $1
#define r2 $2
#define r3 $3
#define r4 $4
#define r5 $5
#define r6 $6
#define r7 $7
#define r8 $8
#define r9 $9
#define r10 $10
#define r11 $11
#define r12 $12
#define r13 $13
#define r14 $14
#define r15 $15
#define r16 $16
#define r17 $17
#define r18 $18
#define r19 $19
#define r20 $20
#define r21 $21
#define r22 $22
#define r23 $23
#define r24 $24
#define r25 $25
#define r26 $26
#define r27 $27
#define r28 $28
#define r29 $29
#define r30 $30
#define r31 $31
// .title "EV5 OSF PAL"
// .ident "V1.18"
//
//****************************************************************************
//* *
//* Copyright (c) 1992, 1993, 1994, 1995 *
//* by DIGITAL Equipment Corporation, Maynard, Mass. *
//* *
//* This software is furnished under a license and may be used and copied *
//* only in accordance with the terms of such license and with the *
//* inclusion of the above copyright notice. This software or any other *
//* copies thereof may not be provided or otherwise made available to any *
//* other person. No title to and ownership of the software is hereby *
//* transferred. *
//* *
//* The information in this software is subject to change without notice *
//* and should not be construed as a commitment by DIGITAL Equipment *
//* Corporation. *
//* *
//* DIGITAL assumes no responsibility for the use or reliability of its *
//* software on equipment which is not supplied by DIGITAL. *
//* *
//****************************************************************************
// .sbttl "Edit History"
//+
// Who Rev When What
// ------------ --- ----------- --------------------------------
// DB 0.0 03-Nov-1992 Start
// DB 0.1 28-Dec-1992 add swpctx
// DB 0.2 05-Jan-1993 Bug: PVC found mtpr dtb_CM -> virt ref bug
// DB 0.3 11-Jan-1993 rearrange trap entry points
// DB 0.4 01-Feb-1993 add tbi
// DB 0.5 04-Feb-1993 real MM, kludge reset flow, kludge swppal
// DB 0.6 09-Feb-1993 Bug: several stack pushers used r16 for pc (should be r14)
// DB 0.7 10-Feb-1993 Bug: pushed wrong PC (+8) on CALL_PAL OPCDEC
// Bug: typo on register number for store in wrunique
// Bug: rti to kern uses r16 as scratch
// Bug: callsys saving wrong value in pt_usp
// DB 0.8 16-Feb-1993 PVC: fix possible pt write->read bug in wrkgp, wrusp
// DB 0.9 18-Feb-1993 Bug: invalid_dpte_handler shifted pte twice
// Bug: rti stl_c could corrupt the stack
// Bug: unaligned returning wrong value in r17 (or should be and)
// DB 0.10 19-Feb-1993 Add draina, rd/wrmces, cflush, cserve, interrupt
// DB 0.11 23-Feb-1993 Turn caches on in reset flow
// DB 0.12 10-Mar-1993 Bug: wrong value for icsr for FEN in kern mode flow
// DB 0.13 15-Mar-1993 Bug: wrong value pushed for PC in invalid_dpte_handler if stack push tbmisses
// DB 0.14 23-Mar-1993 Add impure pointer paltemp, reshuffle some other paltemps to match VMS
// DB 0.15 15-Apr-1993 Combine paltemps for WHAMI and MCES
// DB 0.16 12-May-1993 Update reset
// New restriction: no mfpr exc_addr in cycle 1 of call_pal flows
// Bug: in wrmces, not clearing DPC, DSC
// Update swppal
// Add pal bugchecks, pal_save_state, pal_restore_state
// DB 0.17 24-May-1993 Add dfault_in_pal flow; fixup stack builder to have common state for pc/ps.
// New restriction: No hw_rei_stall in 0,1,2 after mtpr itb_asn
// DB 0.18 26-May-1993 PVC fixes
// JM 0.19 01-jul-1993 Bug: OSFPAL_CALPAL_OPCDEC, TRAP_OPCDEC -- move mt exc_addr after stores
// JM 0.20 07-jul-1993 Update cns_ and mchk_ names for impure.mar conversion to .sdl
// Bug: exc_addr was being loaded before stores that could dtb_miss in the following
// routines: TRAP_FEN,FEN_TO_OPCDEC,CALL_PAL_CALLSYS,RTI_TO_KERN
// JM 0.21 26-jul-1993 Bug: move exc_addr load after ALL stores in the following routines:
// TRAP_IACCVIO::,TRAP_OPCDEC::,TRAP_ARITH::,TRAP_FEN::
// dfault_trap_cont:,fen_to_opcdec:,invalid_dpte_handler:
// osfpal_calpal_opcdec:,CALL_PAL_callsys::,TRAP_UNALIGN::
// Bugs from PVC: trap_unalign - mt pt0 ->mf pt0 within 2 cycles
// JM 0.22 28-jul-1993 Add WRIPIR instruction
// JM 0.23 05-aug-1993 Bump version number for release
// JM 0.24 11-aug-1993 Bug: call_pal_swpipl - palshadow write -> hw_rei violation
// JM 0.25 09-sep-1993 Disable certain "hidden" pvc checks in call_pals;
// New restriction: No hw_rei_stall in 0,1,2,3,4 after mtpr itb_asn - affects HALT(raxmode),
// and SWPCTX
// JM 0.26 07-oct-1993 Re-implement pal_version
// JM 0.27 12-oct-1993 One more time: change pal_version format to conform to SRM
// JM 0.28 14-oct-1993 Change ic_flush routine to pal_ic_flush
// JM 0.29 19-oct-1993 BUG(?): dfault_in_pal: use exc_addr to check for dtbmiss,itbmiss check instead
// of mm_stat<opcode>. mm_stat contains original opcode, not hw_ld.
// JM 0.30 28-oct-1993 BUG: PVC violation - mf exc_addr in first cycles of call_pal in rti,retsys
// JM 0.31 15-nov-1993 BUG: WRFEN trashing r0
// JM 0.32 21-nov-1993 BUG: dtb_ldq,itb_ldq (used in dfault_in_pal) not defined when real_mm=0
// JM 0.33 24-nov-1993 save/restore_state -
// BUG: use ivptbr to restore mvptbr
// BUG: adjust hw_ld/st base/offsets to accomodate 10-bit offset limit
// CHANGE: Load 2 pages into dtb to accomodate compressed logout area/multiprocessors
// JM 0.34 20-dec-1993 BUG: set r11<mode> to kernel for ksnv halt case
// BUG: generate ksnv halt when tb miss on kernel stack accesses
// save exc_addr in r14 for invalid_dpte stack builder
// JM 0.35 30-dec-1993 BUG: PVC violation in trap_arith - mt exc_sum in shadow of store with mf exc_mask in
// the same shadow
// JM 0.36 6-jan-1994 BUG: fen_to_opcdec - savePC should be PC+4, need to save old PS, update new PS
// New palcode restiction: mt icsr<fpe,hwe> --> 3 bubbles to hw_rei --affects wrfen
// JM 0.37 25-jan-1994 BUG: PVC violations in restore_state - mt dc_mode/maf_mode ->mbox instructions
// Hide impure area manipulations in macros
// BUG: PVC violation in save and restore state-- move mt icsr out of shadow of ld/st
// Add some pvc_violate statements
// JM 0.38 1-feb-1994 Changes to save_state: save pt1; don't save r31,f31; update comments to reflect reality;
// Changes to restore_state: restore pt1, icsr; don't restore r31,f31; update comments
// Add code to ensure fen bit set in icsr before ldt
// conditionally compile rax_more_reset out.
// move ldqp,stqp macro definitions to ev5_pal_macros.mar and add .mcall's for them here
// move rax reset stuff to ev5_osf_system_pal.m64
// JM 0.39 7-feb-1994 Move impure pointer to pal scratch space. Use former pt_impure for bc_ctl shadow
// and performance monitoring bits
// Change to save_state routine to save more iprs.
// JM 0.40 19-feb-1994 Change algorithm in save/restore_state routines; add f31,r31 back in
// JM 0.41 21-feb-1994 Add flags to compile out save/restore state (not needed in some systems)
// remove_save_state,remove_restore_state;fix new pvc violation in save_state
// JM 0.42 22-feb-1994 BUG: save_state overwriting r3
// JM 0.43 24-feb-1994 BUG: save_state saving wrong icsr
// JM 0.44 28-feb-1994 Remove ic_flush from wr_tbix instructions
// JM 0.45 15-mar-1994 BUG: call_pal_tbi trashes a0 prior to range check (instruction order problem)
// New pal restriction in pal_restore_state: icsr<fpe>->floating instr = 3 bubbles
// Add exc_sum and exc_mask to pal_save_state (not restore)
// JM 0.46 22-apr-1994 Move impure pointer back into paltemp; Move bc_ctl shadow and pmctr_ctl into impure
// area.
// Add performance counter support to swpctx and wrperfmon
// JM 0.47 9-may-1994 Bump version # (for ev5_osf_system_pal.m64 sys_perfmon fix)
// JM 0.48 13-jun-1994 BUG: trap_interrupt --> put new ev5 ipl at 30 for all osfipl6 interrupts
// JM 0.49 8-jul-1994 BUG: In the unlikely (impossible?) event that the branch to pal_pal_bug_check is
// taken in the interrupt flow, stack is pushed twice.
// SWPPAL - update to support ECO 59 to allow 0 as a valid address
// Add itb flush to save/restore state routines
// Change hw_rei to hw_rei_stall in ic_flush routine. Shouldn't be necessary, but
// conforms to itbia restriction.
// Added enable_physical_console flag (for enter/exit console routines only)
// JM 0.50 29-jul-1994 Add code to dfault & invalid_dpte_handler to ignore exceptions on a
// load to r31/f31. changed dfault_fetch_err to dfault_fetch_ldr31_err and
// nmiss_fetch_err to nmiss_fetch_ldr31_err.
// JM 1.00 1-aug-1994 Add pass2 support (swpctx)
// JM 1.01 2-aug-1994 swppal now passes bc_ctl/bc_config in r1/r2
// JM 1.02 15-sep-1994 BUG: swpctx missing shift of pme bit to correct position in icsr (pass2)
// Moved perfmon code here from system file.
// BUG: pal_perfmon - enable function not saving correct enables when pme not set (pass1)
// JM 1.03 3-oct-1994 Added (pass2 only) code to wrperfmon enable function to look at pme bit.
// JM 1.04 14-oct-1994 BUG: trap_interrupt - ISR read (and saved) before INTID -- INTID can change
// after ISR read, but we won't catch the ISR update. reverse order
// JM 1.05 17-nov-1994 Add code to dismiss UNALIGN trap if LD r31/F31
// JM 1.06 28-nov-1994 BUG: missing mm_stat shift for store case in trap_unalign (new bug due to "dismiss" code)
// JM 1.07 1-dec-1994 EV5 PASS1,2,3 BUG WORKAROUND: Add flag LDVPTE_BUG_FIX. In DTBMISS_DOUBLE, branch to
// DTBMISS_SINGLE if not in palmode.
// JM 1.08 9-jan-1995 Bump version number for change to EV5_OSF_SYSTEM_PAL.M64 - ei_stat fix in mchk logout frame
// JM 1.09 2-feb-1995 Add flag "spe_fix" and accompanying code to workaround pre-pass4 bug: Disable Ibox
// superpage mode in User mode and re-enable in kernel mode.
// EV5_OSF_SYSTEM_PAL.M64 and EV5_PALDEF.MAR (added pt_misc_v_cm) also changed to support this.
// JM 1.10 24-feb-1995 Set ldvpte_bug_fix regardless of ev5 pass. set default to ev5_p2
// ES 1.11 10-mar-1995 Add flag "osf_chm_fix" to enable dcache in user mode only to avoid
// cpu bug.
// JM 1.12 17-mar-1995 BUG FIX: Fix F0 corruption problem in pal_restore_state
// ES 1.13 17-mar-1995 Refine osf_chm_fix
// ES 1.14 20-mar-1995 Don't need as many stalls before hw_rei_stall in chm_fix
// ES 1.15 21-mar-1995 Add a stall to avoid a pvc violation in pal_restore_state
// Force pvc checking of exit_console
// ES 1.16 26-apr-1995 In the wrperfmon disable function, correct meaning of R17<2:0> to ctl2,ctl2,ctl0
// ES 1.17 01-may-1995 In hw_rei_update_spe code, in the osf_chm fix, use bic and bis (self-correcting)
// instead of xor to maintain previous mode in pt_misc
// ES 1.18 14-jul-1995 In wrperfmon enable on pass2, update pmctr even if current process does
// not have pme set. The bits in icsr maintain the master enable state.
// In sys_reset, add icsr<17>=1 for ev56 byte/word eco enable
//
#define vmaj 1
#define vmin 18
#define vms_pal 1
#define osf_pal 2
#define pal_type osf_pal
#define osfpal_version_l ((pal_type<<16) | (vmaj<<8) | (vmin<<0))
//-
// .sbttl "PALtemp register usage"
//+
// The EV5 Ibox holds 24 PALtemp registers. This maps the OSF PAL usage
// for these PALtemps:
//
// pt0 local scratch
// pt1 local scratch
// pt2 entUna pt_entUna
// pt3 CPU specific impure area pointer pt_impure
// pt4 memory management temp
// pt5 memory management temp
// pt6 memory management temp
// pt7 entIF pt_entIF
// pt8 intmask pt_intmask
// pt9 entSys pt_entSys
// pt10
// pt11 entInt pt_entInt
// pt12 entArith pt_entArith
// pt13 reserved for system specific PAL
// pt14 reserved for system specific PAL
// pt15 reserved for system specific PAL
// pt16 MISC: scratch ! WHAMI<7:0> ! 0 0 0 MCES<4:0> pt_misc, pt_whami, pt_mces
// pt17 sysval pt_sysval
// pt18 usp pt_usp
// pt19 ksp pt_ksp
// pt20 PTBR pt_ptbr
// pt21 entMM pt_entMM
// pt22 kgp pt_kgp
// pt23 PCBB pt_pcbb
//
//-
// .sbttl "PALshadow register usage"
//
//+
//
// EV5 shadows R8-R14 and R25 when in PALmode and ICSR<shadow_enable> = 1.
// This maps the OSF PAL usage of R8 - R14 and R25:
//
// r8 ITBmiss/DTBmiss scratch
// r9 ITBmiss/DTBmiss scratch
// r10 ITBmiss/DTBmiss scratch
// r11 PS
// r12 local scratch
// r13 local scratch
// r14 local scratch
// r25 local scratch
//
//
//-
// .sbttl "ALPHA symbol definitions"
// _OSF_PSDEF GLOBAL
// _OSF_PTEDEF GLOBAL
// _OSF_VADEF GLOBAL
// _OSF_PCBDEF GLOBAL
// _OSF_SFDEF GLOBAL
// _OSF_MMCSR_DEF GLOBAL
// _SCBDEF GLOBAL
// _FRMDEF GLOBAL
// _EXSDEF GLOBAL
// _OSF_A0_DEF GLOBAL
// _MCESDEF GLOBAL
// .sbttl "EV5 symbol definitions"
// _EV5DEF
// _PALTEMP
// _MM_STAT_DEF
// _EV5_MM
// _EV5_IPLDEF
// _HALT_CODES GLOBAL
// _MCHK_CODES GLOBAL
// _PAL_IMPURE
// _PAL_LOGOUT
// .sbttl "PALcode configuration options"
// There are a number of options that may be assembled into this version of
// PALcode. They should be adjusted in a prefix assembly file (i.e. do not edit
// the following). The options that can be adjusted cause the resultant PALcode
// to reflect the desired target system.
#define osfpal 1 // This is the PALcode for OSF.
#ifndef rawhide_system
#define rawhide_system 0
#endif
#ifndef real_mm
// Page table translation vs 1-1 mapping
#define real_mm 1
#endif
#ifndef rax_mode
#define rax_mode 0
#endif
#ifndef egore
// End of reset flow starts a program at 200000(hex).
#define egore 1
#endif
#ifndef acore
// End of reset flow starts a program at 40000(hex).
#define acore 0
#endif
// assume acore+egore+rax_mode lt 2 // Assertion checker
#ifndef beh_model
// EV5 behavioral model specific code
#define beh_model 1
#endif
#ifndef init_cbox
// Reset flow init of Bcache and Scache
#define init_cbox 1
#endif
#ifndef disable_crd
// Decides whether the reset flow will disable
#define disable_crd 0
#endif
// correctable read interrupts via ICSR
#ifndef perfmon_debug
#define perfmon_debug 0
#endif
#ifndef icflush_on_tbix
#define icflush_on_tbix 0
#endif
#ifndef remove_restore_state
#define remove_restore_state 0
#endif
#ifndef remove_save_state
#define remove_save_state 0
#endif
#ifndef enable_physical_console
#define enable_physical_console 0
#endif
#ifndef ev5_p1
#define ev5_p1 0
#endif
#ifndef ev5_p2
#define ev5_p2 1
#endif
// assume ev5_p1+ev5_p2 eq 1
#ifndef ldvpte_bug_fix
#define ldvpte_bug_fix 1 // If set, fix ldvpte bug in dtbmiss_double flow.
#endif
#ifndef spe_fix
// If set, disable super-page mode in user mode and re-enable
#define spe_fix 0
#endif
// in kernel. Workaround for cpu bug.
#ifndef build_fixed_image
#define build_fixed_image 0
#endif
#ifndef fill_err_hack
// If set, disable fill_error mode in user mode and re-enable
#define fill_err_hack 0
#endif
// in kernel. Workaround for cpu bug.
// .macro hw_rei_spe
// .iif eq spe_fix, hw_rei
//#if spe_fix != 0
//
//
//#define hw_rei_chm_count hw_rei_chm_count + 1
// p4_fixup_label \hw_rei_chm_count
// .iif eq build_fixed_image, br r31, hw_rei_update_spe
// .iif ne build_fixed_image, hw_rei
//#endif
//
// .endm
// Add flag "osf_chm_fix" to enable dcache in user mode only
// to avoid cpu bug.
#ifndef osf_chm_fix
// If set, enable D-Cache in
#define osf_chm_fix 0
#endif
#if osf_chm_fix != 0
// user mode only.
#define hw_rei_chm_count 0
#endif
#if osf_chm_fix != 0
#define hw_rei_stall_chm_count 0
#endif
#ifndef enable_p4_fixups
#define enable_p4_fixups 0
#endif
// If set, do EV5 Pass 4 fixups
#if spe_fix == 0
#define osf_chm_fix 0
#endif
#if spe_fix == 0
#define enable_p4_fixups 0
#endif
// Only allow fixups if fix enabled
//Turn off fill_errors and MEM_NEM in user mode
// .macro fill_error_hack ?L10_, ?L20_, ?L30_, ?L40_
// //save r22,r23,r24
// stqp r22, 0x150(r31) //add
// stqp r23, 0x158(r31) //contents
// stqp r24, 0x160(r31) //bit mask
//
// lda r22, 0x82(r31)
// ldah r22, 0x8740(r22)
// sll r22, 8, r22
// ldlp r23, 0x80(r22) // r23 <- contents of CIA_MASK
// bis r23,r31,r23
//
// lda r24, 0x8(r31) // r24 <- MEM_NEM bit
// beq r10, L10_ // IF user mode (r10<0> == 0) pal mode
// bic r23, r24, r23 // set fillerr_en bit
// br r31, L20_ // ELSE
//L10_: bis r23, r24, r23 // clear fillerr_en bit
//L20_: // ENDIF
//
// stlp r23, 0x80(r22) // write back the CIA_MASK register
// mb
// ldlp r23, 0x80(r22)
// bis r23,r31,r23
// mb
//
// lda r22, 1(r31) // r22 <- 87.4000.0100 ptr to CIA_CTRL
// ldah r22, 0x8740(r22)
// sll r22, 8, r22
// ldlp r23, 0(r22) // r23 <- contents of CIA_CTRL
// bis r23,r31,r23
//
//
// lda r24, 0x400(r31) // r9 <- fillerr_en bit
// beq r10, L30_ // IF user mode (r10<0> == 0) pal mode
// bic r23, r24, r23 // set fillerr_en bit
// br r31, L40_ // ELSE
//L30_: bis r23, r24, r23 // clear fillerr_en bit
//L40_: // ENDIF
//
// stlp r23, 0(r22) // write back the CIA_CTRL register
// mb
// ldlp r23, 0(r22)
// bis r23,r31,r23
// mb
//
// //restore r22,r23,r24
// ldqp r22, 0x150(r31)
// ldqp r23, 0x158(r31)
// ldqp r24, 0x160(r31)
//
// .endm
// multiprocessor support can be enabled for a max of n processors by
// setting the following to the number of processors on the system.
// Note that this is really the max cpuid.
#ifndef max_cpuid
#define max_cpuid 8
#endif
#ifndef osf_svmin // platform specific palcode version number
#define osf_svmin 0
#endif
#define osfpal_version_h ((max_cpuid<<16) | (osf_svmin<<0))
// .mcall ldqp // override macro64 definition with macro from library
// .mcall stqp // override macro64 definition with macro from library
// .psect _pal,mix
// huh pb pal_base:
// huh pb #define current_block_base . - pal_base
// .sbttl "RESET - Reset Trap Entry Point"
//+
// RESET - offset 0000
// Entry:
// Vectored into via hardware trap on reset, or branched to
// on swppal.
//
// r0 = whami
// r1 = pal_base
// r2 = base of scratch area
// r3 = halt code
//
//
// Function:
//
//-
.text 0
. = 0x0000
.globl Pal_Base
Pal_Base:
HDW_VECTOR(PAL_RESET_ENTRY)
Trap_Reset:
nop
#ifdef SIMOS
/*
* store into r1
*/
br r1,sys_reset
#else
/* following is a srcmax change */
DEBUGSTORE(0x41)
/* The original code jumped using r1 as a linkage register to pass the base
of PALcode to the platform specific code. We use r1 to pass a parameter
from the SROM, so we hardcode the address of Pal_Base in platform.s
*/
br r31, sys_reset
#endif
// Specify PAL version info as a constant
// at a known location (reset + 8).
.long osfpal_version_l // <pal_type@16> ! <vmaj@8> ! <vmin@0>
.long osfpal_version_h // <max_cpuid@16> ! <osf_svmin@0>
.long 0
.long 0
pal_impure_start:
.quad 0
pal_debug_ptr:
.quad 0 // reserved for debug pointer ; 20
#if beh_model == 0
#if enable_p4_fixups != 0
.quad 0
.long p4_fixup_hw_rei_fixup_table
#endif
#else
.quad 0 //
.quad 0 //0x0030
.quad 0
.quad 0 //0x0040
.quad 0
.quad 0 //0x0050
.quad 0
.quad 0 //0x0060
.quad 0
pal_enter_cns_address:
.quad 0 //0x0070 -- address to jump to from enter_console
.long <<sys_exit_console-pal_base>+1> //0x0078 -- offset to sys_exit_console (set palmode bit)
#endif
// .sbttl "IACCVIO- Istream Access Violation Trap Entry Point"
//+
// IACCVIO - offset 0080
// Entry:
// Vectored into via hardware trap on Istream access violation or sign check error on PC.
//
// Function:
// Build stack frame
// a0 <- Faulting VA
// a1 <- MMCSR (1 for ACV)
// a2 <- -1 (for ifetch fault)
// vector via entMM
//-
HDW_VECTOR(PAL_IACCVIO_ENTRY)
Trap_Iaccvio:
DEBUGSTORE(0x42)
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS
bge r25, TRAP_IACCVIO_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r12 // Set new PS
mfpr r30, pt_ksp
TRAP_IACCVIO_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mfpr r14, exc_addr // get pc
stq r16, osfsf_a0(sp) // save regs
bic r14, 3, r16 // pass pc/va as a0
stq r17, osfsf_a1(sp) // a1
or r31, mmcsr_c_acv, r17 // pass mm_csr as a1
stq r18, osfsf_a2(sp) // a2
mfpr r13, pt_entmm // get entry point
stq r11, osfsf_ps(sp) // save old ps
bis r12, r31, r11 // update ps
stq r16, osfsf_pc(sp) // save pc
stq r29, osfsf_gp(sp) // save gp
mtpr r13, exc_addr // load exc_addr with entMM
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
subq r31, 1, r18 // pass flag of istream, as a2
hw_rei_spe
// .sbttl "INTERRUPT- Interrupt Trap Entry Point"
//+
// INTERRUPT - offset 0100
// Entry:
// Vectored into via trap on hardware interrupt
//
// Function:
// check for halt interrupt
// check for passive release (current ipl geq requestor)
// if necessary, switch to kernel mode
// push stack frame, update ps (including current mode and ipl copies), sp, and gp
// pass the interrupt info to the system module
//
//-
HDW_VECTOR(PAL_INTERRUPT_ENTRY)
Trap_Interrupt:
mfpr r13, ev5__intid // Fetch level of interruptor
mfpr r25, ev5__isr // Fetch interrupt summary register
srl r25, isr_v_hlt, r9 // Get HLT bit
mfpr r14, ev5__ipl
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kern
blbs r9, sys_halt_interrupt // halt_interrupt if HLT bit set
cmple r13, r14, r8 // R8 = 1 if intid .less than or eql. ipl
bne r8, sys_passive_release // Passive release is current rupt is lt or eq ipl
and r11, osfps_m_mode, r10 // get mode bit
beq r10, TRAP_INTERRUPT_10_ // Skip stack swap in kernel
mtpr r30, pt_usp // save user stack
mfpr r30, pt_ksp // get kern stack
TRAP_INTERRUPT_10_:
lda sp, (0-osfsf_c_size)(sp)// allocate stack space
mfpr r14, exc_addr // get pc
stq r11, osfsf_ps(sp) // save ps
stq r14, osfsf_pc(sp) // save pc
stq r29, osfsf_gp(sp) // push gp
stq r16, osfsf_a0(sp) // a0
// pvc_violate 354 // ps is cleared anyway, if store to stack faults.
mtpr r31, ev5__ps // Set Ibox current mode to kernel
stq r17, osfsf_a1(sp) // a1
stq r18, osfsf_a2(sp) // a2
subq r13, 0x11, r12 // Start to translate from EV5IPL->OSFIPL
srl r12, 1, r8 // 1d, 1e: ipl 6. 1f: ipl 7.
subq r13, 0x1d, r9 // Check for 1d, 1e, 1f
cmovge r9, r8, r12 // if .ge. 1d, then take shifted value
bis r12, r31, r11 // set new ps
mfpr r12, pt_intmask
and r11, osfps_m_ipl, r14 // Isolate just new ipl (not really needed, since all non-ipl bits zeroed already)
#ifdef SIMOS
/*
* Lance had space problems. We don't.
*/
extbl r12, r14, r14 // Translate new OSFIPL->EV5IPL
mfpr r29, pt_kgp // update gp
mtpr r14, ev5__ipl // load the new IPL into Ibox
#else
// Moved the following three lines to sys_interrupt to make room for debug
// extbl r12, r14, r14 // Translate new OSFIPL->EV5IPL
// mfpr r29, pt_kgp // update gp
// mtpr r14, ev5__ipl // load the new IPL into Ibox
#endif
br r31, sys_interrupt // Go handle interrupt
// .sbttl "ITBMISS- Istream TBmiss Trap Entry Point"
//+
// ITBMISS - offset 0180
// Entry:
// Vectored into via hardware trap on Istream translation buffer miss.
//
// Function:
// Do a virtual fetch of the PTE, and fill the ITB if the PTE is valid.
// Can trap into DTBMISS_DOUBLE.
// This routine can use the PALshadow registers r8, r9, and r10
//
//-
HDW_VECTOR(PAL_ITB_MISS_ENTRY)
Trap_Itbmiss:
#if real_mm == 0
// Simple 1-1 va->pa mapping
nop // Pad to align to E1
mfpr r8, exc_addr
srl r8, page_offset_size_bits, r9
sll r9, 32, r9
lda r9, 0x3301(r9) // Make PTE, V set, all KRE, URE, KWE, UWE
mtpr r9, itb_pte // E1
hw_rei_stall // Nital says I don't have to obey shadow wait rule here.
#else
// Real MM mapping
nop
mfpr r8, ev5__ifault_va_form // Get virtual address of PTE.
nop
mfpr r10, exc_addr // Get PC of faulting instruction in case of DTBmiss.
pal_itb_ldq:
ld_vpte r8, 0(r8) // Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss
mtpr r10, exc_addr // Restore exc_address if there was a trap.
mfpr r31, ev5__va // Unlock VA in case there was a double miss
nop
and r8, osfpte_m_foe, r25 // Look for FOE set.
blbc r8, invalid_ipte_handler // PTE not valid.
nop
bne r25, foe_ipte_handler // FOE is set
nop
mtpr r8, ev5__itb_pte // Ibox remembers the VA, load the PTE into the ITB.
hw_rei_stall //
#endif
// .sbttl "DTBMISS_SINGLE - Dstream Single TBmiss Trap Entry Point"
//+
// DTBMISS_SINGLE - offset 0200
// Entry:
// Vectored into via hardware trap on Dstream single translation buffer miss.
//
// Function:
// Do a virtual fetch of the PTE, and fill the DTB if the PTE is valid.
// Can trap into DTBMISS_DOUBLE.
// This routine can use the PALshadow registers r8, r9, and r10
//-
HDW_VECTOR(PAL_DTB_MISS_ENTRY)
Trap_Dtbmiss_Single:
#if real_mm == 0
// Simple 1-1 va->pa mapping
mfpr r8, va // E0
srl r8, page_offset_size_bits, r9
sll r9, 32, r9
lda r9, 0x3301(r9) // Make PTE, V set, all KRE, URE, KWE, UWE
mtpr r9, dtb_pte // E0
nop // Pad to align to E0
mtpr r8, dtb_tag // E0
nop
nop // Pad tag write
nop
nop // Pad tag write
nop
hw_rei
#else
mfpr r8, ev5__va_form // Get virtual address of PTE - 1 cycle delay. E0.
mfpr r10, exc_addr // Get PC of faulting instruction in case of error. E1.
// DEBUGSTORE(0x45)
// DEBUG_EXC_ADDR()
// Real MM mapping
mfpr r9, ev5__mm_stat // Get read/write bit. E0.
mtpr r10, pt6 // Stash exc_addr away
pal_dtb_ldq:
ld_vpte r8, 0(r8) // Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss
nop // Pad MF VA
mfpr r10, ev5__va // Get original faulting VA for TB load. E0.
nop
mtpr r8, ev5__dtb_pte // Write DTB PTE part. E0.
blbc r8, invalid_dpte_handler // Handle invalid PTE
mtpr r10, ev5__dtb_tag // Write DTB TAG part, completes DTB load. No virt ref for 3 cycles.
mfpr r10, pt6
// Following 2 instructions take 2 cycles
mtpr r10, exc_addr // Return linkage in case we trapped. E1.
mfpr r31, pt0 // Pad the write to dtb_tag
hw_rei // Done, return
#endif
// .sbttl "DTBMISS_DOUBLE - Dstream Double TBmiss Trap Entry Point"
//+
// DTBMISS_DOUBLE - offset 0280
// Entry:
// Vectored into via hardware trap on Double TBmiss from single miss flows.
//
// r8 - faulting VA
// r9 - original MMstat
// r10 - original exc_addr (both itb,dtb miss)
// pt6 - original exc_addr (dtb miss flow only)
// VA IPR - locked with original faulting VA
//
// Function:
// Get PTE, if valid load TB and return.
// If not valid then take TNV/ACV exception.
//
// pt4 and pt5 are reserved for this flow.
//
//
//-
HDW_VECTOR(PAL_DOUBLE_MISS_ENTRY)
Trap_Dtbmiss_double:
#if ldvpte_bug_fix != 0
mtpr r8, pt4 // save r8 to do exc_addr check
mfpr r8, exc_addr
blbc r8, Trap_Dtbmiss_Single //if not in palmode, should be in the single routine, dummy!
mfpr r8, pt4 // restore r8
#endif
nop
mtpr r22, pt5 // Get some scratch space. E1.
// Due to virtual scheme, we can skip the first lookup and go
// right to fetch of level 2 PTE
sll r8, (64-((2*page_seg_size_bits)+page_offset_size_bits)), r22 // Clean off upper bits of VA
mtpr r21, pt4 // Get some scratch space. E1.
srl r22, 61-page_seg_size_bits, r22 // Get Va<seg1>*8
mfpr r21, pt_ptbr // Get physical address of the page table.
nop
addq r21, r22, r21 // Index into page table for level 2 PTE.
sll r8, (64-((1*page_seg_size_bits)+page_offset_size_bits)), r22 // Clean off upper bits of VA
ldqp r21, 0(r21) // Get level 2 PTE (addr<2:0> ignored)
srl r22, 61-page_seg_size_bits, r22 // Get Va<seg1>*8
blbc r21, double_pte_inv // Check for Invalid PTE.
srl r21, 32, r21 // extract PFN from PTE
sll r21, page_offset_size_bits, r21 // get PFN * 2^13 for add to <seg3>*8
addq r21, r22, r21 // Index into page table for level 3 PTE.
nop
ldqp r21, 0(r21) // Get level 3 PTE (addr<2:0> ignored)
blbc r21, double_pte_inv // Check for invalid PTE.
mtpr r21, ev5__dtb_pte // Write the PTE. E0.
mfpr r22, pt5 // Restore scratch register
mtpr r8, ev5__dtb_tag // Write the TAG. E0. No virtual references in subsequent 3 cycles.
mfpr r21, pt4 // Restore scratch register
nop // Pad write to tag.
nop
nop // Pad write to tag.
nop
hw_rei
// .sbttl "UNALIGN -- Dstream unalign trap"
//+
// UNALIGN - offset 0300
// Entry:
// Vectored into via hardware trap on unaligned Dstream reference.
//
// Function:
// Build stack frame
// a0 <- Faulting VA
// a1 <- Opcode
// a2 <- src/dst register number
// vector via entUna
//-
HDW_VECTOR(PAL_UNALIGN_ENTRY)
Trap_Unalign:
/* DEBUGSTORE(0x47)*/
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r8, ev5__mm_stat // Get mmstat --ok to use r8, no tbmiss
mfpr r14, exc_addr // get pc
srl r8, mm_stat_v_ra, r13 // Shift Ra field to ls bits
blbs r14, pal_pal_bug_check // Bugcheck if unaligned in PAL
blbs r8, UNALIGN_NO_DISMISS // lsb only set on store or fetch_m
// not set, must be a load
and r13, 0x1F, r8 // isolate ra
cmpeq r8, 0x1F, r8 // check for r31/F31
bne r8, dfault_fetch_ldr31_err // if its a load to r31 or f31 -- dismiss the fault
UNALIGN_NO_DISMISS:
bis r11, r31, r12 // Save PS
bge r25, UNALIGN_NO_DISMISS_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r12 // Set new PS
mfpr r30, pt_ksp
UNALIGN_NO_DISMISS_10_:
mfpr r25, ev5__va // Unlock VA
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mtpr r25, pt0 // Stash VA
stq r18, osfsf_a2(sp) // a2
stq r11, osfsf_ps(sp) // save old ps
srl r13, mm_stat_v_opcode-mm_stat_v_ra, r25// Isolate opcode
stq r29, osfsf_gp(sp) // save gp
addq r14, 4, r14 // inc PC past the ld/st
stq r17, osfsf_a1(sp) // a1
and r25, mm_stat_m_opcode, r17// Clean opocde for a1
stq r16, osfsf_a0(sp) // save regs
mfpr r16, pt0 // a0 <- va/unlock
stq r14, osfsf_pc(sp) // save pc
mfpr r25, pt_entuna // get entry point
bis r12, r31, r11 // update ps
br r31, unalign_trap_cont
// .sbttl "DFAULT - Dstream Fault Trap Entry Point"
//+
// DFAULT - offset 0380
// Entry:
// Vectored into via hardware trap on dstream fault or sign check error on DVA.
//
// Function:
// Ignore faults on FETCH/FETCH_M
// Check for DFAULT in PAL
// Build stack frame
// a0 <- Faulting VA
// a1 <- MMCSR (1 for ACV, 2 for FOR, 4 for FOW)
// a2 <- R/W
// vector via entMM
//
//-
HDW_VECTOR(PAL_D_FAULT_ENTRY)
Trap_Dfault:
// DEBUGSTORE(0x48)
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r13, ev5__mm_stat // Get mmstat
mfpr r8, exc_addr // get pc, preserve r14
srl r13, mm_stat_v_opcode, r9 // Shift opcode field to ls bits
blbs r8, dfault_in_pal
bis r8, r31, r14 // move exc_addr to correct place
bis r11, r31, r12 // Save PS
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
and r9, mm_stat_m_opcode, r9 // Clean all but opcode
cmpeq r9, evx_opc_sync, r9 // Is the opcode fetch/fetchm?
bne r9, dfault_fetch_ldr31_err // Yes, dismiss the fault
//dismiss exception if load to r31/f31
blbs r13, dfault_no_dismiss // mm_stat<0> set on store or fetchm
// not a store or fetch, must be a load
srl r13, mm_stat_v_ra, r9 // Shift rnum to low bits
and r9, 0x1F, r9 // isolate rnum
nop
cmpeq r9, 0x1F, r9 // Is the rnum r31 or f31?
bne r9, dfault_fetch_ldr31_err // Yes, dismiss the fault
dfault_no_dismiss:
and r13, 0xf, r13 // Clean extra bits in mm_stat
bge r25, dfault_trap_cont // no stack swap needed if cm=kern
mtpr r30, pt_usp // save user stack
bis r31, r31, r12 // Set new PS
mfpr r30, pt_ksp
br r31, dfault_trap_cont
// .sbttl "MCHK - Machine Check Trap Entry Point"
//+
// MCHK - offset 0400
// Entry:
// Vectored into via hardware trap on machine check.
//
// Function:
//
//-
HDW_VECTOR(PAL_MCHK_ENTRY)
Trap_Mchk:
DEBUGSTORE(0x49)
mtpr r31, ic_flush_ctl // Flush the Icache
br r31, sys_machine_check
// .sbttl "OPCDEC - Illegal Opcode Trap Entry Point"
//+
// OPCDEC - offset 0480
// Entry:
// Vectored into via hardware trap on illegal opcode.
//
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
HDW_VECTOR(PAL_OPCDEC_ENTRY)
Trap_Opcdec:
DEBUGSTORE(0x4a)
//simos DEBUG_EXC_ADDR()
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r14, exc_addr // get pc
blbs r14, pal_pal_bug_check // check opcdec in palmode
bis r11, r31, r12 // Save PS
bge r25, TRAP_OPCDEC_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r12 // Set new PS
mfpr r30, pt_ksp
TRAP_OPCDEC_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
addq r14, 4, r14 // inc pc
stq r16, osfsf_a0(sp) // save regs
bis r31, osf_a0_opdec, r16 // set a0
stq r11, osfsf_ps(sp) // save old ps
mfpr r13, pt_entif // get entry point
stq r18, osfsf_a2(sp) // a2
stq r17, osfsf_a1(sp) // a1
stq r29, osfsf_gp(sp) // save gp
stq r14, osfsf_pc(sp) // save pc
bis r12, r31, r11 // update ps
mtpr r13, exc_addr // load exc_addr with entIF
// 1 cycle to hw_rei, E1
mfpr r29, pt_kgp // get the kgp, E1
hw_rei_spe // done, E1
// .sbttl "ARITH - Arithmetic Exception Trap Entry Point"
//+
// ARITH - offset 0500
// Entry:
// Vectored into via hardware trap on arithmetic excpetion.
//
// Function:
// Build stack frame
// a0 <- exc_sum
// a1 <- exc_mask
// a2 <- unpred
// vector via entArith
//
//-
HDW_VECTOR(PAL_ARITH_ENTRY)
Trap_Arith:
DEBUGSTORE(0x4b)
and r11, osfps_m_mode, r12 // get mode bit
mfpr r31, ev5__va // unlock mbox
bis r11, r31, r25 // save ps
mfpr r14, exc_addr // get pc
nop
blbs r14, pal_pal_bug_check // arith trap from PAL
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
beq r12, TRAP_ARITH_10_ // if zero we are in kern now
bis r31, r31, r25 // set the new ps
mtpr r30, pt_usp // save user stack
nop
mfpr r30, pt_ksp // get kern stack
TRAP_ARITH_10_: lda sp, 0-osfsf_c_size(sp) // allocate stack space
mtpr r31, ev5__ps // Set Ibox current mode to kernel
nop // Pad current mode write and stq
mfpr r13, ev5__exc_sum // get the exc_sum
mfpr r12, pt_entarith
stq r14, osfsf_pc(sp) // save pc
stq r17, osfsf_a1(sp)
mfpr r17, ev5__exc_mask // Get exception register mask IPR - no mtpr exc_sum in next cycle
stq r11, osfsf_ps(sp) // save ps
bis r25, r31, r11 // set new ps
stq r16, osfsf_a0(sp) // save regs
srl r13, exc_sum_v_swc, r16// shift data to correct position
stq r18, osfsf_a2(sp)
// pvc_violate 354 // ok, but make sure reads of exc_mask/sum are not in same trap shadow
mtpr r31, ev5__exc_sum // Unlock exc_sum and exc_mask
stq r29, osfsf_gp(sp)
mtpr r12, exc_addr // Set new PC - 1 bubble to hw_rei - E1
mfpr r29, pt_kgp // get the kern gp - E1
hw_rei_spe // done - E1
// .sbttl "FEN - Illegal Floating Point Operation Trap Entry Point"
//+
// FEN - offset 0580
// Entry:
// Vectored into via hardware trap on illegal FP op.
//
// Function:
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
HDW_VECTOR(PAL_FEN_ENTRY)
Trap_Fen:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r14, exc_addr // get pc
blbs r14, pal_pal_bug_check // check opcdec in palmode
mfpr r13, ev5__icsr
nop
bis r11, r31, r12 // Save PS
bge r25, TRAP_FEN_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r12 // Set new PS
mfpr r30, pt_ksp
TRAP_FEN_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
srl r13, icsr_v_fpe, r25 // Shift FP enable to bit 0
stq r16, osfsf_a0(sp) // save regs
mfpr r13, pt_entif // get entry point
stq r18, osfsf_a2(sp) // a2
stq r11, osfsf_ps(sp) // save old ps
stq r29, osfsf_gp(sp) // save gp
bis r12, r31, r11 // set new ps
stq r17, osfsf_a1(sp) // a1
blbs r25,fen_to_opcdec // If FP is enabled, this is really OPCDEC.
bis r31, osf_a0_fen, r16 // set a0
stq r14, osfsf_pc(sp) // save pc
mtpr r13, exc_addr // load exc_addr with entIF
// 1 cycle to hw_rei -E1
mfpr r29, pt_kgp // get the kgp -E1
hw_rei_spe // done -E1
// FEN trap was taken, but the fault is really opcdec.
ALIGN_BRANCH
fen_to_opcdec:
addq r14, 4, r14 // save PC+4
bis r31, osf_a0_opdec, r16 // set a0
stq r14, osfsf_pc(sp) // save pc
mtpr r13, exc_addr // load exc_addr with entIF
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
hw_rei_spe // done
// .sbttl "Misc handlers"
// Start area for misc code.
//+
//dfault_trap_cont
// A dfault trap has been taken. The sp has been updated if necessary.
// Push a stack frame a vector via entMM.
//
// Current state:
// r12 - new PS
// r13 - MMstat
// VA - locked
//
//-
ALIGN_BLOCK
dfault_trap_cont:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mfpr r25, ev5__va // Fetch VA/unlock
stq r18, osfsf_a2(sp) // a2
and r13, 1, r18 // Clean r/w bit for a2
stq r16, osfsf_a0(sp) // save regs
bis r25, r31, r16 // a0 <- va
stq r17, osfsf_a1(sp) // a1
srl r13, 1, r17 // shift fault bits to right position
stq r11, osfsf_ps(sp) // save old ps
bis r12, r31, r11 // update ps
stq r14, osfsf_pc(sp) // save pc
mfpr r25, pt_entmm // get entry point
stq r29, osfsf_gp(sp) // save gp
cmovlbs r17, 1, r17 // a2. acv overrides fox.
mtpr r25, exc_addr // load exc_addr with entMM
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
hw_rei_spe // done
//+
//unalign_trap_cont
// An unalign trap has been taken. Just need to finish up a few things.
//
// Current state:
// r25 - entUna
// r13 - shifted MMstat
//
//-
ALIGN_BLOCK
unalign_trap_cont:
mtpr r25, exc_addr // load exc_addr with entUna
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
and r13, mm_stat_m_ra, r18 // Clean Ra for a2
hw_rei_spe // done
//+
// dfault_in_pal
// Dfault trap was taken, exc_addr points to a PAL PC.
// r9 - mmstat<opcode> right justified
// r8 - exception address
//
// These are the cases:
// opcode was STQ -- from a stack builder, KSP not valid halt
// r14 - original exc_addr
// r11 - original PS
// opcode was STL_C -- rti or retsys clear lock_flag by stack write,
// KSP not valid halt
// r11 - original PS
// r14 - original exc_addr
// opcode was LDQ -- retsys or rti stack read, KSP not valid halt
// r11 - original PS
// r14 - original exc_addr
// opcode was HW_LD -- itbmiss or dtbmiss, bugcheck due to fault on page tables
// r10 - original exc_addr
// r11 - original PS
//
//
//-
ALIGN_BLOCK
dfault_in_pal:
DEBUGSTORE(0x50)
bic r8, 3, r8 // Clean PC
mfpr r9, pal_base
mfpr r31, va // unlock VA
#if real_mm != 0
// if not real_mm, should never get here from miss flows
subq r9, r8, r8 // pal_base - offset
lda r9, pal_itb_ldq-pal_base(r8)
nop
beq r9, dfault_do_bugcheck
lda r9, pal_dtb_ldq-pal_base(r8)
beq r9, dfault_do_bugcheck
#endif
//
// KSP invalid halt case --
ksp_inval_halt:
DEBUGSTORE(76)
bic r11, osfps_m_mode, r11 // set ps to kernel mode
mtpr r0, pt0
mtpr r31, dtb_cm // Make sure that the CM IPRs are all kernel mode
mtpr r31, ips
mtpr r14, exc_addr // Set PC to instruction that caused trouble
//orig pvc_jsr updpcb, bsr=1
bsr r0, pal_update_pcb // update the pcb
lda r0, hlt_c_ksp_inval(r31) // set halt code to hw halt
br r31, sys_enter_console // enter the console
ALIGN_BRANCH
dfault_do_bugcheck:
bis r10, r31, r14 // bugcheck expects exc_addr in r14
br r31, pal_pal_bug_check
ALIGN_BLOCK
//+
// dfault_fetch_ldr31_err - ignore faults on fetch(m) and loads to r31/f31
// On entry -
// r14 - exc_addr
// VA is locked
//
//-
dfault_fetch_ldr31_err:
mtpr r11, ev5__dtb_cm
mtpr r11, ev5__ps // Make sure ps hasn't changed
mfpr r31, va // unlock the mbox
addq r14, 4, r14 // inc the pc to skip the fetch
mtpr r14, exc_addr // give ibox new PC
mfpr r31, pt0 // pad exc_addr write
hw_rei
ALIGN_BLOCK
//+
// sys_from_kern
// callsys from kernel mode - OS bugcheck machine check
//
//-
sys_from_kern:
mfpr r14, exc_addr // PC points to call_pal
subq r14, 4, r14
lda r25, mchk_c_os_bugcheck(r31) // fetch mchk code
br r31, pal_pal_mchk
// .sbttl "Continuation of long call_pal flows"
ALIGN_BLOCK
//+
// wrent_tbl
// Table to write *int in paltemps.
// 4 instructions/entry
// r16 has new value
//
//-
wrent_tbl:
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entint
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entarith
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entmm
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entif
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entuna
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
//orig pvc_jsr wrent, dest=1
nop
mtpr r16, pt_entsys
mfpr r31, pt0 // Pad for mt->mf paltemp rule
hw_rei
ALIGN_BLOCK
//+
// tbi_tbl
// Table to do tbi instructions
// 4 instructions per entry
//-
tbi_tbl:
// -2 tbia
//orig pvc_jsr tbi, dest=1
mtpr r31, ev5__dtb_ia // Flush DTB
mtpr r31, ev5__itb_ia // Flush ITB
#if icflush_on_tbix != 0
br r31, pal_ic_flush // Flush Icache
#else
hw_rei_stall
#endif
nop // Pad table
// -1 tbiap
//orig pvc_jsr tbi, dest=1
mtpr r31, ev5__dtb_iap // Flush DTB
mtpr r31, ev5__itb_iap // Flush ITB
#if icflush_on_tbix != 0
br r31, pal_ic_flush // Flush Icache
#else
hw_rei_stall
#endif
nop // Pad table
// 0 unused
//orig pvc_jsr tbi, dest=1
hw_rei // Pad table
nop
nop
nop
// 1 tbisi
//orig pvc_jsr tbi, dest=1
#if icflush_on_tbix != 0
nop
br r31, pal_ic_flush_and_tbisi // Flush Icache
nop
nop // Pad table
#else
nop
nop
mtpr r17, ev5__itb_is // Flush ITB
hw_rei_stall
#endif
// 2 tbisd
//orig pvc_jsr tbi, dest=1
mtpr r17, ev5__dtb_is // Flush DTB.
nop
nop
hw_rei_stall
// 3 tbis
//orig pvc_jsr tbi, dest=1
mtpr r17, ev5__dtb_is // Flush DTB
#if icflush_on_tbix != 0
br r31, pal_ic_flush_and_tbisi // Flush Icache and ITB
#else
br r31, tbi_finish
ALIGN_BRANCH
tbi_finish:
mtpr r17, ev5__itb_is // Flush ITB
hw_rei_stall
#endif
ALIGN_BLOCK
//+
// bpt_bchk_common:
// Finish up the bpt/bchk instructions
//-
bpt_bchk_common:
stq r18, osfsf_a2(sp) // a2
mfpr r13, pt_entif // get entry point
stq r12, osfsf_ps(sp) // save old ps
stq r14, osfsf_pc(sp) // save pc
stq r29, osfsf_gp(sp) // save gp
mtpr r13, exc_addr // load exc_addr with entIF
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
hw_rei_spe // done
ALIGN_BLOCK
//+
// rti_to_user
// Finish up the rti instruction
//-
rti_to_user:
mtpr r11, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles
mtpr r11, ev5__ps // set Ibox current mode - 2 bubble to hw_rei
mtpr r31, ev5__ipl // set the ipl. No hw_rei for 2 cycles
mtpr r25, pt_ksp // save off incase RTI to user
mfpr r30, pt_usp
hw_rei_spe // and back
ALIGN_BLOCK
//+
// rti_to_kern
// Finish up the rti instruction
//-
rti_to_kern:
and r12, osfps_m_ipl, r11 // clean ps
mfpr r12, pt_intmask // get int mask
extbl r12, r11, r12 // get mask for this ipl
mtpr r25, pt_ksp // save off incase RTI to user
mtpr r12, ev5__ipl // set the new ipl.
or r25, r31, sp // sp
// pvc_violate 217 // possible hidden mt->mf ipl not a problem in callpals
hw_rei
ALIGN_BLOCK
//+
// swpctx_cont
// Finish up the swpctx instruction
//-
swpctx_cont:
#if ev5_p1 != 0
bic r25, r24, r25 // clean icsr<FPE>
get_impure r8 // get impure pointer
sll r12, icsr_v_fpe, r12 // shift new fen to pos
fix_impure_ipr r8 // adjust impure pointer
restore_reg1 pmctr_ctl, r8, r8, ipr=1 // "ldqp" - get pmctr_ctl bits
srl r23, 32, r24 // move asn to low asn pos
ldqp r14, osfpcb_q_mmptr(r16)// get new mmptr
srl r22, osfpcb_v_pme, r22 // get pme down to bit 0
or r25, r12, r25 // icsr with new fen
sll r24, itb_asn_v_asn, r12
#else
bic r25, r24, r25 // clean icsr<FPE,PMP>
sll r12, icsr_v_fpe, r12 // shift new fen to pos
ldqp r14, osfpcb_q_mmptr(r16)// get new mmptr
srl r22, osfpcb_v_pme, r22 // get pme down to bit 0
or r25, r12, r25 // icsr with new fen
srl r23, 32, r24 // move asn to low asn pos
and r22, 1, r22
sll r24, itb_asn_v_asn, r12
sll r22, icsr_v_pmp, r22
nop
or r25, r22, r25 // icsr with new pme
#endif
sll r24, dtb_asn_v_asn, r24
subl r23, r13, r13 // gen new cc offset
mtpr r12, itb_asn // no hw_rei_stall in 0,1,2,3,4
mtpr r24, dtb_asn // Load up new ASN
mtpr r25, icsr // write the icsr
sll r14, page_offset_size_bits, r14 // Move PTBR into internal position.
ldqp r25, osfpcb_q_usp(r16) // get new usp
insll r13, 4, r13 // >> 32
// pvc_violate 379 // ldqp can't trap except replay. only problem if mf same ipr in same shadow
mtpr r14, pt_ptbr // load the new ptbr
mtpr r13, cc // set new offset
ldqp r30, osfpcb_q_ksp(r16) // get new ksp
// pvc_violate 379 // ldqp can't trap except replay. only problem if mf same ipr in same shadow
mtpr r25, pt_usp // save usp
#if ev5_p1 != 0
blbc r8, no_pm_change // if monitoring all processes -- no need to change pm
// otherwise, monitoring select processes - update pm
lda r25, 0x3F(r31)
cmovlbc r22, r31, r8 // if pme set, disable counters, otherwise use saved encodings
sll r25, pmctr_v_ctl2, r25 // create ctl field bit mask
mfpr r22, ev5__pmctr
and r8, r25, r8 // mask new ctl value
bic r22, r25, r22 // clear ctl field in pmctr
or r8, r22, r8
mtpr r8, ev5__pmctr
no_pm_change:
#endif
#if osf_chm_fix != 0
p4_fixup_hw_rei_stall // removes this section for Pass 4 by placing a hw_rei_stall here
#if build_fixed_image != 0
hw_rei_stall
#else
mfpr r9, pt_pcbb // get FEN
#endif
ldqp r9, osfpcb_q_fen(r9)
blbc r9, no_pm_change_10_ // skip if FEN disabled
mb // ensure no outstanding fills
lda r12, 1<<dc_mode_v_dc_ena(r31)
mtpr r12, dc_mode // turn dcache on so we can flush it
nop // force correct slotting
mfpr r31, pt0 // no mbox instructions in 1,2,3,4
mfpr r31, pt0 // no mbox instructions in 1,2,3,4
mfpr r31, pt0 // no mbox instructions in 1,2,3,4
mfpr r31, pt0 // no mbox instructions in 1,2,3,4
lda r8, 0(r31) // flood the dcache with junk data
no_pm_change_5_: ldqp r31, 0(r8)
lda r8, 0x20(r8) // touch each cache block
srl r8, 13, r9
blbc r9, no_pm_change_5_
mb // ensure no outstanding fills
mtpr r31, dc_mode // turn the dcache back off
nop // force correct slotting
mfpr r31, pt0 // no hw_rei_stall in 0,1
#endif
no_pm_change_10_: hw_rei_stall // back we go
ALIGN_BLOCK
//+
// swppal_cont - finish up the swppal call_pal
//-
swppal_cont:
mfpr r2, pt_misc // get misc bits
sll r0, pt_misc_v_switch, r0 // get the "I've switched" bit
or r2, r0, r2 // set the bit
mtpr r31, ev5__alt_mode // ensure alt_mode set to 0 (kernel)
mtpr r2, pt_misc // update the chip
or r3, r31, r4
mfpr r3, pt_impure // pass pointer to the impure area in r3
//orig fix_impure_ipr r3 // adjust impure pointer for ipr read
//orig restore_reg1 bc_ctl, r1, r3, ipr=1 // pass cns_bc_ctl in r1
//orig restore_reg1 bc_config, r2, r3, ipr=1 // pass cns_bc_config in r2
//orig unfix_impure_ipr r3 // restore impure pointer
lda r3, CNS_Q_IPR(r3)
RESTORE_SHADOW(r1,CNS_Q_BC_CTL,r3);
RESTORE_SHADOW(r1,CNS_Q_BC_CFG,r3);
lda r3, -CNS_Q_IPR(r3)
or r31, r31, r0 // set status to success
// pvc_violate 1007
jmp r31, (r4) // and call our friend, it's her problem now
swppal_fail:
addq r0, 1, r0 // set unknown pal or not loaded
hw_rei // and return
// .sbttl "Memory management"
ALIGN_BLOCK
//+
//foe_ipte_handler
// IFOE detected on level 3 pte, sort out FOE vs ACV
//
// on entry:
// with
// R8 = pte
// R10 = pc
//
// Function
// Determine TNV vs ACV vs FOE. Build stack and dispatch
// Will not be here if TNV.
//-
foe_ipte_handler:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS for stack write
bge r25, foe_ipte_handler_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
nop
foe_ipte_handler_10_: srl r8, osfpte_v_kre, r25 // get kre to <0>
lda sp, 0-osfsf_c_size(sp)// allocate stack space
or r10, r31, r14 // Save pc/va in case TBmiss or fault on stack
mfpr r13, pt_entmm // get entry point
stq r16, osfsf_a0(sp) // a0
or r14, r31, r16 // pass pc/va as a0
stq r17, osfsf_a1(sp) // a1
nop
stq r18, osfsf_a2(sp) // a2
lda r17, mmcsr_c_acv(r31) // assume ACV
stq r16, osfsf_pc(sp) // save pc
cmovlbs r25, mmcsr_c_foe, r17 // otherwise FOE
stq r12, osfsf_ps(sp) // save ps
subq r31, 1, r18 // pass flag of istream as a2
stq r29, osfsf_gp(sp)
mtpr r13, exc_addr // set vector address
mfpr r29, pt_kgp // load kgp
hw_rei_spe // out to exec
ALIGN_BLOCK
//+
//invalid_ipte_handler
// TNV detected on level 3 pte, sort out TNV vs ACV
//
// on entry:
// with
// R8 = pte
// R10 = pc
//
// Function
// Determine TNV vs ACV. Build stack and dispatch.
//-
invalid_ipte_handler:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS for stack write
bge r25, invalid_ipte_handler_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
nop
invalid_ipte_handler_10_: srl r8, osfpte_v_kre, r25 // get kre to <0>
lda sp, 0-osfsf_c_size(sp)// allocate stack space
or r10, r31, r14 // Save pc/va in case TBmiss on stack
mfpr r13, pt_entmm // get entry point
stq r16, osfsf_a0(sp) // a0
or r14, r31, r16 // pass pc/va as a0
stq r17, osfsf_a1(sp) // a1
nop
stq r18, osfsf_a2(sp) // a2
and r25, 1, r17 // Isolate kre
stq r16, osfsf_pc(sp) // save pc
xor r17, 1, r17 // map to acv/tnv as a1
stq r12, osfsf_ps(sp) // save ps
subq r31, 1, r18 // pass flag of istream as a2
stq r29, osfsf_gp(sp)
mtpr r13, exc_addr // set vector address
mfpr r29, pt_kgp // load kgp
hw_rei_spe // out to exec
ALIGN_BLOCK
//+
//invalid_dpte_handler
// INVALID detected on level 3 pte, sort out TNV vs ACV
//
// on entry:
// with
// R10 = va
// R8 = pte
// R9 = mm_stat
// PT6 = pc
//
// Function
// Determine TNV vs ACV. Build stack and dispatch
//-
invalid_dpte_handler:
mfpr r12, pt6
blbs r12, tnv_in_pal // Special handler if original faulting reference was in PALmode
bis r12, r31, r14 // save PC in case of tbmiss or fault
srl r9, mm_stat_v_opcode, r25 // shift opc to <0>
mtpr r11, pt0 // Save PS for stack write
and r25, mm_stat_m_opcode, r25 // isolate opcode
cmpeq r25, evx_opc_sync, r25 // is it FETCH/FETCH_M?
blbs r25, nmiss_fetch_ldr31_err // yes
//dismiss exception if load to r31/f31
blbs r9, invalid_dpte_no_dismiss // mm_stat<0> set on store or fetchm
// not a store or fetch, must be a load
srl r9, mm_stat_v_ra, r25 // Shift rnum to low bits
and r25, 0x1F, r25 // isolate rnum
nop
cmpeq r25, 0x1F, r25 // Is the rnum r31 or f31?
bne r25, nmiss_fetch_ldr31_err // Yes, dismiss the fault
invalid_dpte_no_dismiss:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
bge r25, invalid_dpte_no_dismiss_10_ // no stack swap needed if cm=kern
srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
invalid_dpte_no_dismiss_10_: srl r8, osfpte_v_kre, r12 // get kre to <0>
lda sp, 0-osfsf_c_size(sp)// allocate stack space
or r10, r31, r25 // Save va in case TBmiss on stack
and r9, 1, r13 // save r/w flag
stq r16, osfsf_a0(sp) // a0
or r25, r31, r16 // pass va as a0
stq r17, osfsf_a1(sp) // a1
or r31, mmcsr_c_acv, r17 // assume acv
srl r12, osfpte_v_kwe-osfpte_v_kre, r25 // get write enable to <0>
stq r29, osfsf_gp(sp)
stq r18, osfsf_a2(sp) // a2
cmovlbs r13, r25, r12 // if write access move acv based on write enable
or r13, r31, r18 // pass flag of dstream access and read vs write
mfpr r25, pt0 // get ps
stq r14, osfsf_pc(sp) // save pc
mfpr r13, pt_entmm // get entry point
stq r25, osfsf_ps(sp) // save ps
mtpr r13, exc_addr // set vector address
mfpr r29, pt_kgp // load kgp
cmovlbs r12, mmcsr_c_tnv, r17 // make p2 be tnv if access ok else acv
hw_rei_spe // out to exec
//+
//
// We come here if we are erring on a dtb_miss, and the instr is a
// fetch, fetch_m, of load to r31/f31.
// The PC is incremented, and we return to the program.
// essentially ignoring the instruction and error.
//
//-
ALIGN_BLOCK
nmiss_fetch_ldr31_err:
mfpr r12, pt6
addq r12, 4, r12 // bump pc to pc+4
mtpr r12, exc_addr // and set entry point
mfpr r31, pt0 // pad exc_addr write
hw_rei //
ALIGN_BLOCK
//+
// double_pte_inv
// We had a single tbmiss which turned into a double tbmiss which found
// an invalid PTE. Return to single miss with a fake pte, and the invalid
// single miss flow will report the error.
//
// on entry:
// r21 PTE
// r22 available
// VA IPR locked with original fault VA
// pt4 saved r21
// pt5 saved r22
// pt6 original exc_addr
//
// on return to tbmiss flow:
// r8 fake PTE
//
//
//-
double_pte_inv:
srl r21, osfpte_v_kre, r21 // get the kre bit to <0>
mfpr r22, exc_addr // get the pc
lda r22, 4(r22) // inc the pc
lda r8, osfpte_m_prot(r31) // make a fake pte with xre and xwe set
cmovlbc r21, r31, r8 // set to all 0 for acv if pte<kre> is 0
mtpr r22, exc_addr // set for rei
mfpr r21, pt4 // restore regs
mfpr r22, pt5 // restore regs
hw_rei // back to tb miss
ALIGN_BLOCK
//+
//tnv_in_pal
// The only places in pal that ld or store are the
// stack builders, rti or retsys. Any of these mean we
// need to take a ksp not valid halt.
//
//-
tnv_in_pal:
br r31, ksp_inval_halt
// .sbttl "Icache flush routines"
ALIGN_BLOCK
//+
// Common Icache flush routine.
//
//
//-
pal_ic_flush:
nop
mtpr r31, ev5__ic_flush_ctl // Icache flush - E1
nop
nop
// Now, do 44 NOPs. 3RFB prefetches (24) + IC buffer,IB,slot,issue (20)
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 10
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 20
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 30
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 40
nop
nop
one_cycle_and_hw_rei:
nop
nop
hw_rei_stall
#if icflush_on_tbix != 0
ALIGN_BLOCK
//+
// Common Icache flush and ITB invalidate single routine.
// ITBIS and hw_rei_stall must be in same octaword.
// r17 - has address to invalidate
//
//-
PAL_IC_FLUSH_AND_TBISI:
nop
mtpr r31, ev5__ic_flush_ctl // Icache flush - E1
nop
nop
// Now, do 44 NOPs. 3RFB prefetches (24) + IC buffer,IB,slot,issue (20)
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 10
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 20
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 30
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop // 40
nop
nop
nop
nop
// A quadword is 64 bits, so an octaword is 128 bits -> 16 bytes -> 4 instructions
// 44 nops plus 4 instructions before it is 48 instructions.
// Since this routine started on a 32-byte (8 instruction) boundary,
// the following 2 instructions will be in the same octword as required.
// ALIGN_BRANCH
mtpr r17, ev5__itb_is // Flush ITB
hw_rei_stall
#endif
ALIGN_BLOCK
//+
//osfpal_calpal_opcdec
// Here for all opcdec CALL_PALs
//
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
osfpal_calpal_opcdec:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r14, exc_addr // get pc
nop
bis r11, r31, r12 // Save PS for stack write
bge r25, osfpal_calpal_opcdec_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
osfpal_calpal_opcdec_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
nop
stq r16, osfsf_a0(sp) // save regs
bis r31, osf_a0_opdec, r16 // set a0
stq r18, osfsf_a2(sp) // a2
mfpr r13, pt_entif // get entry point
stq r12, osfsf_ps(sp) // save old ps
stq r17, osfsf_a1(sp) // a1
stq r14, osfsf_pc(sp) // save pc
nop
stq r29, osfsf_gp(sp) // save gp
mtpr r13, exc_addr // load exc_addr with entIF
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kgp
hw_rei_spe // done
//+
//pal_update_pcb
// Update the PCB with the current SP, AST, and CC info
//
// r0 - return linkage
//-
ALIGN_BLOCK
pal_update_pcb:
mfpr r12, pt_pcbb // get pcbb
and r11, osfps_m_mode, r25 // get mode
beq r25, pal_update_pcb_10_ // in kern? no need to update user sp
mtpr r30, pt_usp // save user stack
stqp r30, osfpcb_q_usp(r12) // store usp
br r31, pal_update_pcb_20_ // join common
pal_update_pcb_10_: stqp r30, osfpcb_q_ksp(r12) // store ksp
pal_update_pcb_20_: rpcc r13 // get cyccounter
srl r13, 32, r14 // move offset
addl r13, r14, r14 // merge for new time
stlp r14, osfpcb_l_cc(r12) // save time
//orig pvc_jsr updpcb, bsr=1, dest=1
ret r31, (r0)
#if remove_save_state == 0
// .sbttl "PAL_SAVE_STATE"
//+
//
// Pal_save_state
//
// Function
// All chip state saved, all PT's, SR's FR's, IPR's
//
//
// Regs' on entry...
//
// R0 = halt code
// pt0 = r0
// R1 = pointer to impure
// pt4 = r1
// R3 = return addr
// pt5 = r3
//
// register usage:
// r0 = halt_code
// r1 = addr of impure area
// r3 = return_address
// r4 = scratch
//
//-
ALIGN_BLOCK
.globl pal_save_state
pal_save_state:
//
//
// start of implementation independent save routine
//
// the impure area is larger than the addressibility of hw_ld and hw_st
// therefore, we need to play some games: The impure area
// is informally divided into the "machine independent" part and the
// "machine dependent" part. The state that will be saved in the
// "machine independent" part are gpr's, fpr's, hlt, flag, mchkflag (use (un)fix_impure_gpr macros).
// All others will be in the "machine dependent" part (use (un)fix_impure_ipr macros).
// The impure pointer will need to be adjusted by a different offset for each. The store/restore_reg
// macros will automagically adjust the offset correctly.
//
// The distributed code is commented out and followed by corresponding SRC code.
// Beware: SAVE_IPR and RESTORE_IPR blow away r0(v0)
//orig fix_impure_gpr r1 // adjust impure area pointer for stores to "gpr" part of impure area
lda r1, 0x200(r1) // Point to center of CPU segment
//orig store_reg1 flag, r31, r1, ipr=1 // clear dump area flag
SAVE_GPR(r31,CNS_Q_FLAG,r1) // Clear the valid flag
//orig store_reg1 hlt, r0, r1, ipr=1
SAVE_GPR(r0,CNS_Q_HALT,r1) // Save the halt code
mfpr r0, pt0 // get r0 back //orig
//orig store_reg1 0, r0, r1 // save r0
SAVE_GPR(r0,CNS_Q_GPR+0x00,r1) // Save r0
mfpr r0, pt4 // get r1 back //orig
//orig store_reg1 1, r0, r1 // save r1
SAVE_GPR(r0,CNS_Q_GPR+0x08,r1) // Save r1
//orig store_reg 2 // save r2
SAVE_GPR(r2,CNS_Q_GPR+0x10,r1) // Save r2
mfpr r0, pt5 // get r3 back //orig
//orig store_reg1 3, r0, r1 // save r3
SAVE_GPR(r0,CNS_Q_GPR+0x18,r1) // Save r3
// reason code has been saved
// r0 has been saved
// r1 has been saved
// r2 has been saved
// r3 has been saved
// pt0, pt4, pt5 have been lost
//
// Get out of shadow mode
//
mfpr r2, icsr // Get icsr //orig
//orig ldah r0, <1@<icsr_v_sde-16>>(r31) // Get a one in SHADOW_ENABLE bit location
ldah r0, (1<<(icsr_v_sde-16))(r31)
bic r2, r0, r0 // ICSR with SDE clear //orig
mtpr r0, icsr // Turn off SDE //orig
mfpr r31, pt0 // SDE bubble cycle 1 //orig
mfpr r31, pt0 // SDE bubble cycle 2 //orig
mfpr r31, pt0 // SDE bubble cycle 3 //orig
nop //orig
// save integer regs R4-r31
//orig #define t 4
//orig .repeat 28
//orig store_reg \t
//orig #define t t + 1
//orig .endr
SAVE_GPR(r4,CNS_Q_GPR+0x20,r1)
SAVE_GPR(r5,CNS_Q_GPR+0x28,r1)
SAVE_GPR(r6,CNS_Q_GPR+0x30,r1)
SAVE_GPR(r7,CNS_Q_GPR+0x38,r1)
SAVE_GPR(r8,CNS_Q_GPR+0x40,r1)
SAVE_GPR(r9,CNS_Q_GPR+0x48,r1)
SAVE_GPR(r10,CNS_Q_GPR+0x50,r1)
SAVE_GPR(r11,CNS_Q_GPR+0x58,r1)
SAVE_GPR(r12,CNS_Q_GPR+0x60,r1)
SAVE_GPR(r13,CNS_Q_GPR+0x68,r1)
SAVE_GPR(r14,CNS_Q_GPR+0x70,r1)
SAVE_GPR(r15,CNS_Q_GPR+0x78,r1)
SAVE_GPR(r16,CNS_Q_GPR+0x80,r1)
SAVE_GPR(r17,CNS_Q_GPR+0x88,r1)
SAVE_GPR(r18,CNS_Q_GPR+0x90,r1)
SAVE_GPR(r19,CNS_Q_GPR+0x98,r1)
SAVE_GPR(r20,CNS_Q_GPR+0xA0,r1)
SAVE_GPR(r21,CNS_Q_GPR+0xA8,r1)
SAVE_GPR(r22,CNS_Q_GPR+0xB0,r1)
SAVE_GPR(r23,CNS_Q_GPR+0xB8,r1)
SAVE_GPR(r24,CNS_Q_GPR+0xC0,r1)
SAVE_GPR(r25,CNS_Q_GPR+0xC8,r1)
SAVE_GPR(r26,CNS_Q_GPR+0xD0,r1)
SAVE_GPR(r27,CNS_Q_GPR+0xD8,r1)
SAVE_GPR(r28,CNS_Q_GPR+0xE0,r1)
SAVE_GPR(r29,CNS_Q_GPR+0xE8,r1)
SAVE_GPR(r30,CNS_Q_GPR+0xF0,r1)
SAVE_GPR(r31,CNS_Q_GPR+0xF8,r1)
// save all paltemp regs except pt0
//orig unfix_impure_gpr r1 // adjust impure area pointer for gpr stores
//orig fix_impure_ipr r1 // adjust impure area pointer for pt stores
//orig #define t 1
//orig .repeat 23
//orig store_reg \t , pal=1
//orig #define t t + 1
//orig .endr
lda r1, -0x200(r1) // Restore the impure base address.
lda r1, CNS_Q_IPR(r1) // Point to the base of IPR area.
SAVE_IPR(pt0,CNS_Q_PT+0x00,r1) // the osf code didn't save/restore palTemp 0 ?? pboyle
SAVE_IPR(pt1,CNS_Q_PT+0x08,r1)
SAVE_IPR(pt2,CNS_Q_PT+0x10,r1)
SAVE_IPR(pt3,CNS_Q_PT+0x18,r1)
SAVE_IPR(pt4,CNS_Q_PT+0x20,r1)
SAVE_IPR(pt5,CNS_Q_PT+0x28,r1)
SAVE_IPR(pt6,CNS_Q_PT+0x30,r1)
SAVE_IPR(pt7,CNS_Q_PT+0x38,r1)
SAVE_IPR(pt8,CNS_Q_PT+0x40,r1)
SAVE_IPR(pt9,CNS_Q_PT+0x48,r1)
SAVE_IPR(pt10,CNS_Q_PT+0x50,r1)
SAVE_IPR(pt11,CNS_Q_PT+0x58,r1)
SAVE_IPR(pt12,CNS_Q_PT+0x60,r1)
SAVE_IPR(pt13,CNS_Q_PT+0x68,r1)
SAVE_IPR(pt14,CNS_Q_PT+0x70,r1)
SAVE_IPR(pt15,CNS_Q_PT+0x78,r1)
SAVE_IPR(pt16,CNS_Q_PT+0x80,r1)
SAVE_IPR(pt17,CNS_Q_PT+0x88,r1)
SAVE_IPR(pt18,CNS_Q_PT+0x90,r1)
SAVE_IPR(pt19,CNS_Q_PT+0x98,r1)
SAVE_IPR(pt20,CNS_Q_PT+0xA0,r1)
SAVE_IPR(pt21,CNS_Q_PT+0xA8,r1)
SAVE_IPR(pt22,CNS_Q_PT+0xB0,r1)
SAVE_IPR(pt23,CNS_Q_PT+0xB8,r1)
// Restore shadow mode
mfpr r31, pt0 // pad write to icsr out of shadow of store (trap does not abort write) //orig
mfpr r31, pt0 //orig
mtpr r2, icsr // Restore original ICSR //orig
mfpr r31, pt0 // SDE bubble cycle 1 //orig
mfpr r31, pt0 // SDE bubble cycle 2 //orig
mfpr r31, pt0 // SDE bubble cycle 3 //orig
nop //orig
// save all integer shadow regs
//orig #define t 8
//orig .repeat 7
//orig store_reg \t, shadow=1
//orig #define t t + 1
//orig .endr
//orig store_reg 25, shadow=1
SAVE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1) // also called p0...p7 in the Hudson code
SAVE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1)
SAVE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1)
SAVE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1)
SAVE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1)
SAVE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1)
SAVE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1)
SAVE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1)
//orig store_reg exc_addr, ipr=1 // save ipr
//orig store_reg pal_base, ipr=1 // save ipr
//orig store_reg mm_stat, ipr=1 // save ipr
//orig store_reg va, ipr=1 // save ipr
//orig store_reg icsr, ipr=1 // save ipr
//orig store_reg ipl, ipr=1 // save ipr
//orig store_reg ps, ipr=1 // save ipr
//orig store_reg itb_asn, ipr=1 // save ipr
//orig store_reg aster, ipr=1 // save ipr
//orig store_reg astrr, ipr=1 // save ipr
//orig store_reg sirr, ipr=1 // save ipr
//orig store_reg isr, ipr=1 // save ipr
//orig store_reg ivptbr, ipr=1 // save ipr
//orig store_reg mcsr, ipr=1 // save ipr
//orig store_reg dc_mode, ipr=1 // save ipr
SAVE_IPR(excAddr,CNS_Q_EXC_ADDR,r1)
SAVE_IPR(palBase,CNS_Q_PAL_BASE,r1)
SAVE_IPR(mmStat,CNS_Q_MM_STAT,r1)
SAVE_IPR(va,CNS_Q_VA,r1)
SAVE_IPR(icsr,CNS_Q_ICSR,r1)
SAVE_IPR(ipl,CNS_Q_IPL,r1)
SAVE_IPR(ips,CNS_Q_IPS,r1)
SAVE_IPR(itbAsn,CNS_Q_ITB_ASN,r1)
SAVE_IPR(aster,CNS_Q_ASTER,r1)
SAVE_IPR(astrr,CNS_Q_ASTRR,r1)
SAVE_IPR(sirr,CNS_Q_SIRR,r1)
SAVE_IPR(isr,CNS_Q_ISR,r1)
SAVE_IPR(iVptBr,CNS_Q_IVPTBR,r1)
SAVE_IPR(mcsr,CNS_Q_MCSR,r1)
SAVE_IPR(dcMode,CNS_Q_DC_MODE,r1)
//orig pvc_violate 379 // mf maf_mode after a store ok (pvc doesn't distinguish ld from st)
//orig store_reg maf_mode, ipr=1 // save ipr -- no mbox instructions for
//orig // PVC violation applies only to
pvc$osf35$379: // loads. HW_ST ok here, so ignore
SAVE_IPR(mafMode,CNS_Q_MAF_MODE,r1) // MBOX INST->MF MAF_MODE IN 0,1,2
//the following iprs are informational only -- will not be restored
//orig store_reg icperr_stat, ipr=1
//orig store_reg pmctr, ipr=1
//orig store_reg intid, ipr=1
//orig store_reg exc_sum, ipr=1
//orig store_reg exc_mask, ipr=1
//orig ldah r14, 0xfff0(r31)
//orig zap r14, 0xE0, r14 // Get Cbox IPR base
//orig nop // pad mf dcperr_stat out of shadow of last store
//orig nop
//orig nop
//orig store_reg dcperr_stat, ipr=1
SAVE_IPR(icPerr,CNS_Q_ICPERR_STAT,r1)
SAVE_IPR(PmCtr,CNS_Q_PM_CTR,r1)
SAVE_IPR(intId,CNS_Q_INT_ID,r1)
SAVE_IPR(excSum,CNS_Q_EXC_SUM,r1)
SAVE_IPR(excMask,CNS_Q_EXC_MASK,r1)
ldah r14, 0xFFF0(zero)
zap r14, 0xE0, r14 // Get base address of CBOX IPRs
NOP // Pad mfpr dcPerr out of shadow of
NOP // last store
NOP
SAVE_IPR(dcPerr,CNS_Q_DCPERR_STAT,r1)
// read cbox ipr state
//orig mb
//orig ldqp r2, ev5__sc_ctl(r14)
//orig ldqp r13, ld_lock(r14)
//orig ldqp r4, ev5__sc_addr(r14)
//orig ldqp r5, ev5__ei_addr(r14)
//orig ldqp r6, ev5__bc_tag_addr(r14)
//orig ldqp r7, ev5__fill_syn(r14)
//orig bis r5, r4, r31
//orig bis r7, r6, r31 // make sure previous loads finish before reading stat registers which unlock them
//orig ldqp r8, ev5__sc_stat(r14) // unlocks sc_stat,sc_addr
//orig ldqp r9, ev5__ei_stat(r14) // may unlock ei_*, bc_tag_addr, fill_syn
//orig ldqp r31, ev5__ei_stat(r14) // ensures it is really unlocked
//orig mb
#ifndef SIMOS
mb
ldq_p r2, scCtl(r14)
ldq_p r13, ldLock(r14)
ldq_p r4, scAddr(r14)
ldq_p r5, eiAddr(r14)
ldq_p r6, bcTagAddr(r14)
ldq_p r7, fillSyn(r14)
bis r5, r4, zero // Make sure all loads complete before
bis r7, r6, zero // reading registers that unlock them.
ldq_p r8, scStat(r14) // Unlocks scAddr.
ldq_p r9, eiStat(r14) // Unlocks eiAddr, bcTagAddr, fillSyn.
ldq_p zero, eiStat(r14) // Make sure it is really unlocked.
mb
#endif
//orig // save cbox ipr state
//orig store_reg1 sc_ctl, r2, r1, ipr=1
//orig store_reg1 ld_lock, r13, r1, ipr=1
//orig store_reg1 sc_addr, r4, r1, ipr=1
//orig store_reg1 ei_addr, r5, r1, ipr=1
//orig store_reg1 bc_tag_addr, r6, r1, ipr=1
//orig store_reg1 fill_syn, r7, r1, ipr=1
//orig store_reg1 sc_stat, r8, r1, ipr=1
//orig store_reg1 ei_stat, r9, r1, ipr=1
//orig //bc_config? sl_rcv?
SAVE_SHADOW(r2,CNS_Q_SC_CTL,r1);
SAVE_SHADOW(r13,CNS_Q_LD_LOCK,r1);
SAVE_SHADOW(r4,CNS_Q_SC_ADDR,r1);
SAVE_SHADOW(r5,CNS_Q_EI_ADDR,r1);
SAVE_SHADOW(r6,CNS_Q_BC_TAG_ADDR,r1);
SAVE_SHADOW(r7,CNS_Q_FILL_SYN,r1);
SAVE_SHADOW(r8,CNS_Q_SC_STAT,r1);
SAVE_SHADOW(r9,CNS_Q_EI_STAT,r1);
// restore impure base //orig
//orig unfix_impure_ipr r1
lda r1, -CNS_Q_IPR(r1)
// save all floating regs //orig
mfpr r0, icsr // get icsr //orig
or r31, 1, r2 // get a one //orig
//orig sll r2, #icsr_v_fpe, r2 // shift for fpu spot //orig
sll r2, icsr_v_fpe, r2 // Shift it into ICSR<FPE> position
or r2, r0, r0 // set FEN on //orig
mtpr r0, icsr // write to icsr, enabling FEN //orig
// map the save area virtually
// orig mtpr r31, dtb_ia // clear the dtb
// orig srl r1, page_offset_size_bits, r0 // Clean off low bits of VA
// orig sll r0, 32, r0 // shift to PFN field
// orig lda r2, 0xff(r31) // all read enable and write enable bits set
// orig sll r2, 8, r2 // move to PTE location
// orig addq r0, r2, r0 // combine with PFN
// orig mtpr r0, dtb_pte // Load PTE and set TB valid bit
// orig mtpr r1, dtb_tag // write TB tag
mtpr r31, dtbIa // Clear all DTB entries
srl r1, va_s_off, r0 // Clean off byte-within-page offset
sll r0, pte_v_pfn, r0 // Shift to form PFN
lda r0, pte_m_prot(r0) // Set all read/write enable bits
mtpr r0, dtbPte // Load the PTE and set valid
mtpr r1, dtbTag // Write the PTE and tag into the DTB
//orig // map the next page too - in case the impure area crosses a page boundary
//orig lda r4, 1@page_offset_size_bits(r1) // generate address for next page
//orig srl r4, page_offset_size_bits, r0 // Clean off low bits of VA
//orig sll r0, 32, r0 // shift to PFN field
//orig lda r2, 0xff(r31) // all read enable and write enable bits set
//orig sll r2, 8, r2 // move to PTE location
//orig addq r0, r2, r0 // combine with PFN
//orig mtpr r0, dtb_pte // Load PTE and set TB valid bit
//orig mtpr r4, dtb_tag // write TB tag
lda r4, (1<<va_s_off)(r1) // Generate address for next page
srl r4, va_s_off, r0 // Clean off byte-within-page offset
sll r0, pte_v_pfn, r0 // Shift to form PFN
lda r0, pte_m_prot(r0) // Set all read/write enable bits
mtpr r0, dtbPte // Load the PTE and set valid
mtpr r4, dtbTag // Write the PTE and tag into the DTB
sll r31, 0, r31 // stall cycle 1 // orig
sll r31, 0, r31 // stall cycle 2 // orig
sll r31, 0, r31 // stall cycle 3 // orig
nop // orig
//orig // add offset for saving fpr regs
//orig fix_impure_gpr r1
lda r1, 0x200(r1) // Point to center of CPU segment
// now save the regs - F0-F31
//orig #define t 0
//orig .repeat 32
//orig store_reg \t , fpu=1
//orig #define t t + 1
//orig .endr
mf_fpcr f0 // original
SAVE_FPR(f0,CNS_Q_FPR+0x00,r1)
SAVE_FPR(f1,CNS_Q_FPR+0x08,r1)
SAVE_FPR(f2,CNS_Q_FPR+0x10,r1)
SAVE_FPR(f3,CNS_Q_FPR+0x18,r1)
SAVE_FPR(f4,CNS_Q_FPR+0x20,r1)
SAVE_FPR(f5,CNS_Q_FPR+0x28,r1)
SAVE_FPR(f6,CNS_Q_FPR+0x30,r1)
SAVE_FPR(f7,CNS_Q_FPR+0x38,r1)
SAVE_FPR(f8,CNS_Q_FPR+0x40,r1)
SAVE_FPR(f9,CNS_Q_FPR+0x48,r1)
SAVE_FPR(f10,CNS_Q_FPR+0x50,r1)
SAVE_FPR(f11,CNS_Q_FPR+0x58,r1)
SAVE_FPR(f12,CNS_Q_FPR+0x60,r1)
SAVE_FPR(f13,CNS_Q_FPR+0x68,r1)
SAVE_FPR(f14,CNS_Q_FPR+0x70,r1)
SAVE_FPR(f15,CNS_Q_FPR+0x78,r1)
SAVE_FPR(f16,CNS_Q_FPR+0x80,r1)
SAVE_FPR(f17,CNS_Q_FPR+0x88,r1)
SAVE_FPR(f18,CNS_Q_FPR+0x90,r1)
SAVE_FPR(f19,CNS_Q_FPR+0x98,r1)
SAVE_FPR(f20,CNS_Q_FPR+0xA0,r1)
SAVE_FPR(f21,CNS_Q_FPR+0xA8,r1)
SAVE_FPR(f22,CNS_Q_FPR+0xB0,r1)
SAVE_FPR(f23,CNS_Q_FPR+0xB8,r1)
SAVE_FPR(f24,CNS_Q_FPR+0xC0,r1)
SAVE_FPR(f25,CNS_Q_FPR+0xC8,r1)
SAVE_FPR(f26,CNS_Q_FPR+0xD0,r1)
SAVE_FPR(f27,CNS_Q_FPR+0xD8,r1)
SAVE_FPR(f28,CNS_Q_FPR+0xE0,r1)
SAVE_FPR(f29,CNS_Q_FPR+0xE8,r1)
SAVE_FPR(f30,CNS_Q_FPR+0xF0,r1)
SAVE_FPR(f31,CNS_Q_FPR+0xF8,r1)
//orig //switch impure offset from gpr to ipr---
//orig unfix_impure_gpr r1
//orig fix_impure_ipr r1
//orig store_reg1 fpcsr, f0, r1, fpcsr=1
SAVE_FPR(f0,CNS_Q_FPCSR,r1) // fpcsr loaded above into f0 -- can it reach// pb
lda r1, -0x200(r1) // Restore the impure base address
//orig // and back to gpr ---
//orig unfix_impure_ipr r1
//orig fix_impure_gpr r1
//orig lda r0, cns_mchksize(r31) // get size of mchk area
//orig store_reg1 mchkflag, r0, r1, ipr=1
//orig mb
lda r1, CNS_Q_IPR(r1) // Point to base of IPR area again
// save this using the IPR base (it is closer) not the GRP base as they used...pb
lda r0, MACHINE_CHECK_SIZE(r31) // get size of mchk area
SAVE_SHADOW(r0,CNS_Q_MCHK,r1);
mb
//orig or r31, 1, r0 // get a one
//orig store_reg1 flag, r0, r1, ipr=1 // set dump area flag
//orig mb
lda r1, -CNS_Q_IPR(r1) // back to the base
lda r1, 0x200(r1) // Point to center of CPU segment
or r31, 1, r0 // get a one
SAVE_GPR(r0,CNS_Q_FLAG,r1) // // set dump area valid flag
mb
//orig // restore impure area base
//orig unfix_impure_gpr r1
lda r1, -0x200(r1) // Point to center of CPU segment
mtpr r31, dtb_ia // clear the dtb //orig
mtpr r31, itb_ia // clear the itb //orig
//orig pvc_jsr savsta, bsr=1, dest=1
ret r31, (r3) // and back we go
#endif
#if remove_restore_state == 0
// .sbttl "PAL_RESTORE_STATE"
//+
//
// Pal_restore_state
//
//
// register usage:
// r1 = addr of impure area
// r3 = return_address
// all other regs are scratchable, as they are about to
// be reloaded from ram.
//
// Function:
// All chip state restored, all SRs, FRs, PTs, IPRs
// *** except R1, R3, PT0, PT4, PT5 ***
//
//-
ALIGN_BLOCK
pal_restore_state:
//need to restore sc_ctl,bc_ctl,bc_config??? if so, need to figure out a safe way to do so.
//orig // map the console io area virtually
//orig mtpr r31, dtb_ia // clear the dtb
//orig srl r1, page_offset_size_bits, r0 // Clean off low bits of VA
//orig sll r0, 32, r0 // shift to PFN field
//orig lda r2, 0xff(r31) // all read enable and write enable bits set
//orig sll r2, 8, r2 // move to PTE location
//orig addq r0, r2, r0 // combine with PFN
//orig
//orig mtpr r0, dtb_pte // Load PTE and set TB valid bit
//orig mtpr r1, dtb_tag // write TB tag
//orig
mtpr r31, dtbIa // Clear all DTB entries
srl r1, va_s_off, r0 // Clean off byte-within-page offset
sll r0, pte_v_pfn, r0 // Shift to form PFN
lda r0, pte_m_prot(r0) // Set all read/write enable bits
mtpr r0, dtbPte // Load the PTE and set valid
mtpr r1, dtbTag // Write the PTE and tag into the DTB
//orig // map the next page too, in case impure area crosses page boundary
//orig lda r4, 1@page_offset_size_bits(r1) // generate address for next page
//orig srl r4, page_offset_size_bits, r0 // Clean off low bits of VA
//orig sll r0, 32, r0 // shift to PFN field
//orig lda r2, 0xff(r31) // all read enable and write enable bits set
//orig sll r2, 8, r2 // move to PTE location
//orig addq r0, r2, r0 // combine with PFN
//orig
//orig mtpr r0, dtb_pte // Load PTE and set TB valid bit
//orig mtpr r4, dtb_tag // write TB tag - no virtual mbox instruction for 3 cycles
lda r4, (1<<VA_S_OFF)(r1) // Generate address for next page
srl r4, va_s_off, r0 // Clean off byte-within-page offset
sll r0, pte_v_pfn, r0 // Shift to form PFN
lda r0, pte_m_prot(r0) // Set all read/write enable bits
mtpr r0, dtbPte // Load the PTE and set valid
mtpr r4, dtbTag // Write the PTE and tag into the DTB
//orig // save all floating regs
//orig mfpr r0, icsr // get icsr
//orig// assume ICSR_V_SDE gt <ICSR_V_FPE> // assertion checker
//orig or r31, <<1@<ICSR_V_SDE-ICSR_V_FPE>> ! 1>, r2 // set SDE and FPE
//orig sll r2, #icsr_v_fpe, r2 // shift for fpu spot
//orig or r2, r0, r0 // set FEN on
//orig mtpr r0, icsr // write to icsr, enabling FEN and SDE. 3 bubbles to floating instr.
mfpr r0, icsr // Get current ICSR
bis zero, 1, r2 // Get a '1'
or r2, (1<<(icsr_v_sde-icsr_v_fpe)), r2
sll r2, icsr_v_fpe, r2 // Shift bits into position
bis r2, r2, r0 // Set ICSR<SDE> and ICSR<FPE>
mtpr r0, icsr // Update the chip
mfpr r31, pt0 // FPE bubble cycle 1 //orig
mfpr r31, pt0 // FPE bubble cycle 2 //orig
mfpr r31, pt0 // FPE bubble cycle 3 //orig
//orig fix_impure_ipr r1
//orig restore_reg1 fpcsr, f0, r1, fpcsr=1
//orig mt_fpcr f0
//orig
//orig unfix_impure_ipr r1
//orig fix_impure_gpr r1 // adjust impure pointer offset for gpr access
//orig
//orig // restore all floating regs
//orig#define t 0
//orig .repeat 32
//orig restore_reg \t , fpu=1
//orig#define t t + 1
//orig .endr
lda r1, 200(r1) // Point to base of IPR area again
RESTORE_FPR(f0,CNS_Q_FPCSR,r1) // can it reach?? pb
mt_fpcr f0 // original
lda r1, 0x200(r1) // point to center of CPU segment
RESTORE_FPR(f0,CNS_Q_FPR+0x00,r1)
RESTORE_FPR(f1,CNS_Q_FPR+0x08,r1)
RESTORE_FPR(f2,CNS_Q_FPR+0x10,r1)
RESTORE_FPR(f3,CNS_Q_FPR+0x18,r1)
RESTORE_FPR(f4,CNS_Q_FPR+0x20,r1)
RESTORE_FPR(f5,CNS_Q_FPR+0x28,r1)
RESTORE_FPR(f6,CNS_Q_FPR+0x30,r1)
RESTORE_FPR(f7,CNS_Q_FPR+0x38,r1)
RESTORE_FPR(f8,CNS_Q_FPR+0x40,r1)
RESTORE_FPR(f9,CNS_Q_FPR+0x48,r1)
RESTORE_FPR(f10,CNS_Q_FPR+0x50,r1)
RESTORE_FPR(f11,CNS_Q_FPR+0x58,r1)
RESTORE_FPR(f12,CNS_Q_FPR+0x60,r1)
RESTORE_FPR(f13,CNS_Q_FPR+0x68,r1)
RESTORE_FPR(f14,CNS_Q_FPR+0x70,r1)
RESTORE_FPR(f15,CNS_Q_FPR+0x78,r1)
RESTORE_FPR(f16,CNS_Q_FPR+0x80,r1)
RESTORE_FPR(f17,CNS_Q_FPR+0x88,r1)
RESTORE_FPR(f18,CNS_Q_FPR+0x90,r1)
RESTORE_FPR(f19,CNS_Q_FPR+0x98,r1)
RESTORE_FPR(f20,CNS_Q_FPR+0xA0,r1)
RESTORE_FPR(f21,CNS_Q_FPR+0xA8,r1)
RESTORE_FPR(f22,CNS_Q_FPR+0xB0,r1)
RESTORE_FPR(f23,CNS_Q_FPR+0xB8,r1)
RESTORE_FPR(f24,CNS_Q_FPR+0xC0,r1)
RESTORE_FPR(f25,CNS_Q_FPR+0xC8,r1)
RESTORE_FPR(f26,CNS_Q_FPR+0xD0,r1)
RESTORE_FPR(f27,CNS_Q_FPR+0xD8,r1)
RESTORE_FPR(f28,CNS_Q_FPR+0xE0,r1)
RESTORE_FPR(f29,CNS_Q_FPR+0xE8,r1)
RESTORE_FPR(f30,CNS_Q_FPR+0xF0,r1)
RESTORE_FPR(f31,CNS_Q_FPR+0xF8,r1)
//orig // switch impure pointer from gpr to ipr area --
//orig unfix_impure_gpr r1
//orig fix_impure_ipr r1
//orig
//orig // restore all pal regs
//orig#define t 1
//orig .repeat 23
//orig restore_reg \t , pal=1
//orig#define t t + 1
//orig .endr
lda r1, -0x200(r1) // Restore base address of impure area.
lda r1, CNS_Q_IPR(r1) // Point to base of IPR area.
RESTORE_IPR(pt0,CNS_Q_PT+0x00,r1) // the osf code didn't save/restore palTemp 0 ?? pboyle
RESTORE_IPR(pt1,CNS_Q_PT+0x08,r1)
RESTORE_IPR(pt2,CNS_Q_PT+0x10,r1)
RESTORE_IPR(pt3,CNS_Q_PT+0x18,r1)
RESTORE_IPR(pt4,CNS_Q_PT+0x20,r1)
RESTORE_IPR(pt5,CNS_Q_PT+0x28,r1)
RESTORE_IPR(pt6,CNS_Q_PT+0x30,r1)
RESTORE_IPR(pt7,CNS_Q_PT+0x38,r1)
RESTORE_IPR(pt8,CNS_Q_PT+0x40,r1)
RESTORE_IPR(pt9,CNS_Q_PT+0x48,r1)
RESTORE_IPR(pt10,CNS_Q_PT+0x50,r1)
RESTORE_IPR(pt11,CNS_Q_PT+0x58,r1)
RESTORE_IPR(pt12,CNS_Q_PT+0x60,r1)
RESTORE_IPR(pt13,CNS_Q_PT+0x68,r1)
RESTORE_IPR(pt14,CNS_Q_PT+0x70,r1)
RESTORE_IPR(pt15,CNS_Q_PT+0x78,r1)
RESTORE_IPR(pt16,CNS_Q_PT+0x80,r1)
RESTORE_IPR(pt17,CNS_Q_PT+0x88,r1)
RESTORE_IPR(pt18,CNS_Q_PT+0x90,r1)
RESTORE_IPR(pt19,CNS_Q_PT+0x98,r1)
RESTORE_IPR(pt20,CNS_Q_PT+0xA0,r1)
RESTORE_IPR(pt21,CNS_Q_PT+0xA8,r1)
RESTORE_IPR(pt22,CNS_Q_PT+0xB0,r1)
RESTORE_IPR(pt23,CNS_Q_PT+0xB8,r1)
//orig restore_reg exc_addr, ipr=1 // restore ipr
//orig restore_reg pal_base, ipr=1 // restore ipr
//orig restore_reg ipl, ipr=1 // restore ipr
//orig restore_reg ps, ipr=1 // restore ipr
//orig mtpr r0, dtb_cm // set current mode in mbox too
//orig restore_reg itb_asn, ipr=1
//orig srl r0, itb_asn_v_asn, r0
//orig sll r0, dtb_asn_v_asn, r0
//orig mtpr r0, dtb_asn // set ASN in Mbox too
//orig restore_reg ivptbr, ipr=1
//orig mtpr r0, mvptbr // use ivptbr value to restore mvptbr
//orig restore_reg mcsr, ipr=1
//orig restore_reg aster, ipr=1
//orig restore_reg astrr, ipr=1
//orig restore_reg sirr, ipr=1
//orig restore_reg maf_mode, ipr=1 // no mbox instruction for 3 cycles
//orig mfpr r31, pt0 // (may issue with mt maf_mode)
//orig mfpr r31, pt0 // bubble cycle 1
//orig mfpr r31, pt0 // bubble cycle 2
//orig mfpr r31, pt0 // bubble cycle 3
//orig mfpr r31, pt0 // (may issue with following ld)
// r0 gets the value of RESTORE_IPR in the macro and this code uses this side effect (gag)
RESTORE_IPR(excAddr,CNS_Q_EXC_ADDR,r1)
RESTORE_IPR(palBase,CNS_Q_PAL_BASE,r1)
RESTORE_IPR(ipl,CNS_Q_IPL,r1)
RESTORE_IPR(ips,CNS_Q_IPS,r1)
mtpr r0, dtbCm // Set Mbox current mode too.
RESTORE_IPR(itbAsn,CNS_Q_ITB_ASN,r1)
srl r0, 4, r0
sll r0, 57, r0
mtpr r0, dtbAsn // Set Mbox ASN too
RESTORE_IPR(iVptBr,CNS_Q_IVPTBR,r1)
mtpr r0, mVptBr // Set Mbox VptBr too
RESTORE_IPR(mcsr,CNS_Q_MCSR,r1)
RESTORE_IPR(aster,CNS_Q_ASTER,r1)
RESTORE_IPR(astrr,CNS_Q_ASTRR,r1)
RESTORE_IPR(sirr,CNS_Q_SIRR,r1)
RESTORE_IPR(mafMode,CNS_Q_MAF_MODE,r1)
STALL
STALL
STALL
STALL
STALL
// restore all integer shadow regs
//orig#define t 8
//orig .repeat 7
//orig restore_reg \t, shadow=1
//orig#define t t + 1
//orig .endr
//orig restore_reg 25, shadow=1
//orig restore_reg dc_mode, ipr=1 // no mbox instructions for 4 cycles
RESTORE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1) // also called p0...p7 in the Hudson code
RESTORE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1)
RESTORE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1)
RESTORE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1)
RESTORE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1)
RESTORE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1)
RESTORE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1)
RESTORE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1)
RESTORE_IPR(dcMode,CNS_Q_DC_MODE,r1)
//
// Get out of shadow mode
//
mfpr r31, pt0 // pad last load to icsr write (in case of replay, icsr will be written anyway) //orig
mfpr r31, pt0 // " //orig
mfpr r0, icsr // Get icsr //orig
//orig ldah r2, <1@<icsr_v_sde-16>>(r31) // Get a one in SHADOW_ENABLE bit location
ldah r2, (1<<(ICSR_V_SDE-16))(r31) // Get a one in SHADOW_ENABLE bit location //orig
bic r0, r2, r2 // ICSR with SDE clear //orig
mtpr r2, icsr // Turn off SDE - no palshadow rd/wr for 3 bubble cycles //orig
mfpr r31, pt0 // SDE bubble cycle 1 //orig
mfpr r31, pt0 // SDE bubble cycle 2 //orig
mfpr r31, pt0 // SDE bubble cycle 3 //orig
nop //orig
//orig // switch impure pointer from ipr to gpr area --
//orig unfix_impure_ipr r1
//orig fix_impure_gpr r1
//orig // restore all integer regs
//orig#define t 4
//orig .repeat 28
//orig restore_reg \t
//orig#define t t + 1
//orig .endr
// Restore GPRs (r0, r2 are restored later, r1 and r3 are trashed) ...
lda r1, -CNS_Q_IPR(r1) // Restore base address of impure area
lda r1, 0x200(r1) // Point to center of CPU segment
RESTORE_GPR(r4,CNS_Q_GPR+0x20,r1)
RESTORE_GPR(r5,CNS_Q_GPR+0x28,r1)
RESTORE_GPR(r6,CNS_Q_GPR+0x30,r1)
RESTORE_GPR(r7,CNS_Q_GPR+0x38,r1)
RESTORE_GPR(r8,CNS_Q_GPR+0x40,r1)
RESTORE_GPR(r9,CNS_Q_GPR+0x48,r1)
RESTORE_GPR(r10,CNS_Q_GPR+0x50,r1)
RESTORE_GPR(r11,CNS_Q_GPR+0x58,r1)
RESTORE_GPR(r12,CNS_Q_GPR+0x60,r1)
RESTORE_GPR(r13,CNS_Q_GPR+0x68,r1)
RESTORE_GPR(r14,CNS_Q_GPR+0x70,r1)
RESTORE_GPR(r15,CNS_Q_GPR+0x78,r1)
RESTORE_GPR(r16,CNS_Q_GPR+0x80,r1)
RESTORE_GPR(r17,CNS_Q_GPR+0x88,r1)
RESTORE_GPR(r18,CNS_Q_GPR+0x90,r1)
RESTORE_GPR(r19,CNS_Q_GPR+0x98,r1)
RESTORE_GPR(r20,CNS_Q_GPR+0xA0,r1)
RESTORE_GPR(r21,CNS_Q_GPR+0xA8,r1)
RESTORE_GPR(r22,CNS_Q_GPR+0xB0,r1)
RESTORE_GPR(r23,CNS_Q_GPR+0xB8,r1)
RESTORE_GPR(r24,CNS_Q_GPR+0xC0,r1)
RESTORE_GPR(r25,CNS_Q_GPR+0xC8,r1)
RESTORE_GPR(r26,CNS_Q_GPR+0xD0,r1)
RESTORE_GPR(r27,CNS_Q_GPR+0xD8,r1)
RESTORE_GPR(r28,CNS_Q_GPR+0xE0,r1)
RESTORE_GPR(r29,CNS_Q_GPR+0xE8,r1)
RESTORE_GPR(r30,CNS_Q_GPR+0xF0,r1)
RESTORE_GPR(r31,CNS_Q_GPR+0xF8,r1)
//orig // switch impure pointer from gpr to ipr area --
//orig unfix_impure_gpr r1
//orig fix_impure_ipr r1
//orig restore_reg icsr, ipr=1 // restore original icsr- 4 bubbles to hw_rei
lda t0, -0x200(t0) // Restore base address of impure area.
lda t0, CNS_Q_IPR(t0) // Point to base of IPR area again.
RESTORE_IPR(icsr,CNS_Q_ICSR,r1)
//orig // and back again --
//orig unfix_impure_ipr r1
//orig fix_impure_gpr r1
//orig store_reg1 flag, r31, r1, ipr=1 // clear dump area valid flag
//orig mb
lda t0, -CNS_Q_IPR(t0) // Back to base of impure area again,
lda t0, 0x200(t0) // and back to center of CPU segment
SAVE_GPR(r31,CNS_Q_FLAG,r1) // Clear the dump area valid flag
mb
//orig // and back we go
//orig// restore_reg 3
//orig restore_reg 2
//orig// restore_reg 1
//orig restore_reg 0
//orig // restore impure area base
//orig unfix_impure_gpr r1
RESTORE_GPR(r2,CNS_Q_GPR+0x10,r1)
RESTORE_GPR(r0,CNS_Q_GPR+0x00,r1)
lda r1, -0x200(r1) // Restore impure base address
mfpr r31, pt0 // stall for ldqp above //orig
mtpr r31, dtb_ia // clear the tb //orig
mtpr r31, itb_ia // clear the itb //orig
//orig pvc_jsr rststa, bsr=1, dest=1
ret r31, (r3) // back we go //orig
#endif
//+
// pal_pal_bug_check -- code has found a bugcheck situation.
// Set things up and join common machine check flow.
//
// Input:
// r14 - exc_addr
//
// On exit:
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
// pt_misc<47:32> - mchk code
// pt_misc<31:16> - scb vector
// r14 - base of Cbox IPRs in IO space
// MCES<mchk> is set
//-
ALIGN_BLOCK
.globl pal_pal_bug_check_from_int
pal_pal_bug_check_from_int:
DEBUGSTORE(0x79)
//simos DEBUG_EXC_ADDR()
DEBUGSTORE(0x20)
//simos bsr r25, put_hex
lda r25, mchk_c_bugcheck(r31)
addq r25, 1, r25 // set flag indicating we came from interrupt and stack is already pushed
br r31, pal_pal_mchk
nop
pal_pal_bug_check:
lda r25, mchk_c_bugcheck(r31)
pal_pal_mchk:
sll r25, 32, r25 // Move mchk code to position
mtpr r14, pt10 // Stash exc_addr
mtpr r14, exc_addr
mfpr r12, pt_misc // Get MCES and scratch
zap r12, 0x3c, r12
or r12, r25, r12 // Combine mchk code
lda r25, scb_v_procmchk(r31) // Get SCB vector
sll r25, 16, r25 // Move SCBv to position
or r12, r25, r25 // Combine SCBv
mtpr r0, pt0 // Stash for scratch
bis r25, mces_m_mchk, r25 // Set MCES<MCHK> bit
mtpr r25, pt_misc // Save mchk code!scbv!whami!mces
ldah r14, 0xfff0(r31)
mtpr r1, pt1 // Stash for scratch
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r4, pt4
mtpr r5, pt5
mtpr r6, pt6
blbs r12, sys_double_machine_check // MCHK halt if double machine check
br r31, sys_mchk_collect_iprs // Join common machine check flow
// align_to_call_pal_section // Align to address of first call_pal entry point - 2000
// .sbttl "HALT - PALcode for HALT instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// GO to console code
//
//-
.text 1
// . = 0x2000
CALL_PAL_PRIV(PAL_HALT_ENTRY)
call_pal_halt:
#if rax_mode == 0
mfpr r31, pt0 // Pad exc_addr read
mfpr r31, pt0
mfpr r12, exc_addr // get PC
subq r12, 4, r12 // Point to the HALT
mtpr r12, exc_addr
mtpr r0, pt0
//orig pvc_jsr updpcb, bsr=1
bsr r0, pal_update_pcb // update the pcb
lda r0, hlt_c_sw_halt(r31) // set halt code to sw halt
br r31, sys_enter_console // enter the console
#else // RAX mode
mb
mb
mtpr r9, ev5__dtb_asn // no Dstream virtual ref for next 3 cycles.
mtpr r9, ev5__itb_asn // E1. Update ITB ASN. No hw_rei for 5 cycles.
mtpr r8, exc_addr // no HW_REI for 1 cycle.
blbc r9, not_begin_case
mtpr r31, ev5__dtb_ia // clear DTB. No Dstream virtual ref for 2 cycles.
mtpr r31, ev5__itb_ia // clear ITB.
not_begin_case:
nop
nop
nop
nop // pad mt itb_asn ->hw_rei_stall
hw_rei_stall
#endif
// .sbttl "CFLUSH- PALcode for CFLUSH instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// R16 - contains the PFN of the page to be flushed
//
// Function:
// Flush all Dstream caches of 1 entire page
// The CFLUSH routine is in the system specific module.
//
//-
CALL_PAL_PRIV(PAL_CFLUSH_ENTRY)
Call_Pal_Cflush:
br r31, sys_cflush
// .sbttl "DRAINA - PALcode for DRAINA instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
// Implicit TRAPB performed by hardware.
//
// Function:
// Stall instruction issue until all prior instructions are guaranteed to
// complete without incurring aborts. For the EV5 implementation, this
// means waiting until all pending DREADS are returned.
//
//-
CALL_PAL_PRIV(PAL_DRAINA_ENTRY)
Call_Pal_Draina:
ldah r14, 0x100(r31) // Init counter. Value?
nop
DRAINA_LOOP:
subq r14, 1, r14 // Decrement counter
mfpr r13, ev5__maf_mode // Fetch status bit
srl r13, maf_mode_v_dread_pending, r13
ble r14, DRAINA_LOOP_TOO_LONG
nop
blbs r13, DRAINA_LOOP // Wait until all DREADS clear
hw_rei
DRAINA_LOOP_TOO_LONG:
br r31, call_pal_halt
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_PRIV(0x0003)
CallPal_OpcDec03:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0004)
CallPal_OpcDec04:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0005)
CallPal_OpcDec05:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0006)
CallPal_OpcDec06:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0007)
CallPal_OpcDec07:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0008)
CallPal_OpcDec08:
br r31, osfpal_calpal_opcdec
// .sbttl "CSERVE- PALcode for CSERVE instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Various functions for private use of console software
//
// option selector in r0
// arguments in r16....
// The CSERVE routine is in the system specific module.
//
//-
CALL_PAL_PRIV(PAL_CSERVE_ENTRY)
Call_Pal_Cserve:
br r31, sys_cserve
// .sbttl "swppal - PALcode for swppal instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
// Vectored into via hardware PALcode instruction dispatch.
// R16 contains the new PAL identifier
// R17:R21 contain implementation-specific entry parameters
//
// R0 receives status:
// 0 success (PAL was switched)
// 1 unknown PAL variant
// 2 known PAL variant, but PAL not loaded
//
//
// Function:
// Swap control to another PAL.
//-
CALL_PAL_PRIV(PAL_SWPPAL_ENTRY)
Call_Pal_Swppal:
cmpule r16, 255, r0 // see if a kibble was passed
cmoveq r16, r16, r0 // if r16=0 then a valid address (ECO 59)
or r16, r31, r3 // set r3 incase this is a address
blbc r0, swppal_cont // nope, try it as an address
cmpeq r16, 2, r0 // is it our friend OSF?
blbc r0, swppal_fail // nope, don't know this fellow
br r2, CALL_PAL_SWPPAL_10_ // tis our buddy OSF
// .global osfpal_hw_entry_reset
// .weak osfpal_hw_entry_reset
// .long <osfpal_hw_entry_reset-pal_start>
//orig halt // don't know how to get the address here - kludge ok, load pal at 0
.long 0 // ?? hack upon hack...pb
CALL_PAL_SWPPAL_10_: ldlp r3, 0(r2) // fetch target addr
// ble r3, swppal_fail ; if OSF not linked in say not loaded.
mfpr r2, pal_base // fetch pal base
addq r2, r3, r3 // add pal base
lda r2, 0x3FFF(r31) // get pal base checker mask
and r3, r2, r2 // any funky bits set?
cmpeq r2, 0, r0 //
blbc r0, swppal_fail // return unknown if bad bit set.
br r31, swppal_cont
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_PRIV(0x000B)
CallPal_OpcDec0B:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x000C)
CallPal_OpcDec0C:
br r31, osfpal_calpal_opcdec
// .sbttl "wripir- PALcode for wripir instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
// r16 = processor number to interrupt
//
// Function:
// IPIR <- R16
// Handled in system-specific code
//
// Exit:
// interprocessor interrupt is recorded on the target processor
// and is initiated when the proper enabling conditions are present.
//-
CALL_PAL_PRIV(PAL_WRIPIR_ENTRY)
Call_Pal_Wrpir:
br r31, sys_wripir
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_PRIV(0x000E)
CallPal_OpcDec0E:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x000F)
CallPal_OpcDec0F:
br r31, osfpal_calpal_opcdec
// .sbttl "rdmces- PALcode for rdmces instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// R0 <- ZEXT(MCES)
//-
CALL_PAL_PRIV(PAL_RDMCES_ENTRY)
Call_Pal_Rdmces:
mfpr r0, pt_mces // Read from PALtemp
and r0, mces_m_all, r0 // Clear other bits
hw_rei
// .sbttl "wrmces- PALcode for wrmces instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// If {R16<0> EQ 1} then MCES<0> <- 0 (MCHK)
// If {R16<1> EQ 1} then MCES<1> <- 0 (SCE)
// If {R16<2> EQ 1} then MCES<2> <- 0 (PCE)
// MCES<3> <- R16<3> (DPC)
// MCES<4> <- R16<4> (DSC)
//
//-
CALL_PAL_PRIV(PAL_WRMCES_ENTRY)
Call_Pal_Wrmces:
and r16, ((1<<mces_v_mchk) | (1<<mces_v_sce) | (1<<mces_v_pce)), r13 // Isolate MCHK, SCE, PCE
mfpr r14, pt_mces // Get current value
ornot r31, r13, r13 // Flip all the bits
and r16, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r17
and r14, r13, r1 // Update MCHK, SCE, PCE
bic r1, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r1 // Clear old DPC, DSC
or r1, r17, r1 // Update DPC and DSC
mtpr r1, pt_mces // Write MCES back
#if rawhide_system == 0
nop // Pad to fix PT write->read restriction
#else
blbs r16, RAWHIDE_clear_mchk_lock // Clear logout from lock
#endif
nop
hw_rei
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_PRIV(0x0012)
CallPal_OpcDec12:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0013)
CallPal_OpcDec13:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0014)
CallPal_OpcDec14:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0015)
CallPal_OpcDec15:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0016)
CallPal_OpcDec16:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0017)
CallPal_OpcDec17:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0018)
CallPal_OpcDec18:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0019)
CallPal_OpcDec19:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001A)
CallPal_OpcDec1A:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001B)
CallPal_OpcDec1B:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001C)
CallPal_OpcDec1C:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001D)
CallPal_OpcDec1D:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001E)
CallPal_OpcDec1E:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x001F)
CallPal_OpcDec1F:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0020)
CallPal_OpcDec20:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0021)
CallPal_OpcDec21:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0022)
CallPal_OpcDec22:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0023)
CallPal_OpcDec23:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0024)
CallPal_OpcDec24:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0025)
CallPal_OpcDec25:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0026)
CallPal_OpcDec26:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0027)
CallPal_OpcDec27:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0028)
CallPal_OpcDec28:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x0029)
CallPal_OpcDec29:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x002A)
CallPal_OpcDec2A:
br r31, osfpal_calpal_opcdec
// .sbttl "wrfen - PALcode for wrfen instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// a0<0> -> ICSR<FPE>
// Store new FEN in PCB
// Final value of t0 (r1), t8..t10 (r22..r24) and a0 (r16) are UNPREDICTABLE
//
// Issue: What about pending FP loads when FEN goes from on->off????
//-
CALL_PAL_PRIV(PAL_WRFEN_ENTRY)
Call_Pal_Wrfen:
or r31, 1, r13 // Get a one
mfpr r1, ev5__icsr // Get current FPE
sll r13, icsr_v_fpe, r13 // shift 1 to icsr<fpe> spot, e0
and r16, 1, r16 // clean new fen
sll r16, icsr_v_fpe, r12 // shift new fen to correct bit position
bic r1, r13, r1 // zero icsr<fpe>
or r1, r12, r1 // Or new FEN into ICSR
mfpr r12, pt_pcbb // Get PCBB - E1
mtpr r1, ev5__icsr // write new ICSR. 3 Bubble cycles to HW_REI
stlp r16, osfpcb_q_fen(r12) // Store FEN in PCB.
mfpr r31, pt0 // Pad ICSR<FPE> write.
mfpr r31, pt0
mfpr r31, pt0
// pvc_violate 225 // cuz PVC can't distinguish which bits changed
hw_rei
CALL_PAL_PRIV(0x002C)
CallPal_OpcDec2C:
br r31, osfpal_calpal_opcdec
// .sbttl "wrvptpr - PALcode for wrvptpr instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// vptptr <- a0 (r16)
//-
CALL_PAL_PRIV(PAL_WRVPTPTR_ENTRY)
Call_Pal_Wrvptptr:
mtpr r16, ev5__mvptbr // Load Mbox copy
mtpr r16, ev5__ivptbr // Load Ibox copy
nop // Pad IPR write
nop
hw_rei
CALL_PAL_PRIV(0x002E)
CallPal_OpcDec2E:
br r31, osfpal_calpal_opcdec
CALL_PAL_PRIV(0x002F)
CallPal_OpcDec2F:
br r31, osfpal_calpal_opcdec
// .sbttl "swpctx- PALcode for swpctx instruction"
//+
//
// Entry:
// hardware dispatch via callPal instruction
// R16 -> new pcb
//
// Function:
// dynamic state moved to old pcb
// new state loaded from new pcb
// pcbb pointer set
// old pcbb returned in R0
//
// Note: need to add perf monitor stuff
//-
CALL_PAL_PRIV(PAL_SWPCTX_ENTRY)
Call_Pal_Swpctx:
rpcc r13 // get cyccounter
mfpr r0, pt_pcbb // get pcbb
ldqp r22, osfpcb_q_fen(r16) // get new fen/pme
ldqp r23, osfpcb_l_cc(r16) // get new asn
srl r13, 32, r25 // move offset
mfpr r24, pt_usp // get usp
stqp r30, osfpcb_q_ksp(r0) // store old ksp
// pvc_violate 379 // stqp can't trap except replay. only problem if mf same ipr in same shadow.
mtpr r16, pt_pcbb // set new pcbb
stqp r24, osfpcb_q_usp(r0) // store usp
addl r13, r25, r25 // merge for new time
stlp r25, osfpcb_l_cc(r0) // save time
ldah r24, (1<<(icsr_v_fpe-16))(r31)
and r22, 1, r12 // isolate fen
mfpr r25, icsr // get current icsr
ev5_pass2 lda r24, (1<<icsr_v_pmp)(r24)
br r31, swpctx_cont
// .sbttl "wrval - PALcode for wrval instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// sysvalue <- a0 (r16)
//-
CALL_PAL_PRIV(PAL_WRVAL_ENTRY)
Call_Pal_Wrval:
nop
mtpr r16, pt_sysval // Pad paltemp write
nop
nop
hw_rei
// .sbttl "rdval - PALcode for rdval instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- sysvalue
//-
CALL_PAL_PRIV(PAL_RDVAL_ENTRY)
Call_Pal_Rdval:
nop
mfpr r0, pt_sysval
nop
hw_rei
// .sbttl "tbi - PALcode for tbi instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// TB invalidate
// r16/a0 = TBI type
// r17/a1 = Va for TBISx instructions
//-
CALL_PAL_PRIV(PAL_TBI_ENTRY)
Call_Pal_Tbi:
addq r16, 2, r16 // change range to 0-2
br r23, CALL_PAL_tbi_10_ // get our address
CALL_PAL_tbi_10_: cmpult r16, 6, r22 // see if in range
lda r23, tbi_tbl-CALL_PAL_tbi_10_(r23) // set base to start of table
sll r16, 4, r16 // * 16
blbc r22, CALL_PAL_tbi_30_ // go rei, if not
addq r23, r16, r23 // addr of our code
//orig pvc_jsr tbi
jmp r31, (r23) // and go do it
CALL_PAL_tbi_30_:
hw_rei
nop
// .sbttl "wrent - PALcode for wrent instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Update ent* in paltemps
// r16/a0 = Address of entry routine
// r17/a1 = Entry Number 0..5
//
// r22, r23 trashed
//-
CALL_PAL_PRIV(PAL_WRENT_ENTRY)
Call_Pal_Wrent:
cmpult r17, 6, r22 // see if in range
br r23, CALL_PAL_wrent_10_ // get our address
CALL_PAL_wrent_10_: bic r16, 3, r16 // clean pc
blbc r22, CALL_PAL_wrent_30_ // go rei, if not in range
lda r23, wrent_tbl-CALL_PAL_wrent_10_(r23) // set base to start of table
sll r17, 4, r17 // *16
addq r17, r23, r23 // Get address in table
//orig pvc_jsr wrent
jmp r31, (r23) // and go do it
CALL_PAL_wrent_30_:
hw_rei // out of range, just return
// .sbttl "swpipl - PALcode for swpipl instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- PS<IPL>
// PS<IPL> <- a0<2:0> (r16)
//
// t8 (r22) is scratch
//-
CALL_PAL_PRIV(PAL_SWPIPL_ENTRY)
Call_Pal_Swpipl:
and r16, osfps_m_ipl, r16 // clean New ipl
mfpr r22, pt_intmask // get int mask
extbl r22, r16, r22 // get mask for this ipl
bis r11, r31, r0 // return old ipl
bis r16, r31, r11 // set new ps
mtpr r22, ev5__ipl // set new mask
mfpr r31, pt0 // pad ipl write
mfpr r31, pt0 // pad ipl write
hw_rei // back
// .sbttl "rdps - PALcode for rdps instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- ps
//-
CALL_PAL_PRIV(PAL_RDPS_ENTRY)
Call_Pal_Rdps:
bis r11, r31, r0 // Fetch PALshadow PS
nop // Must be 2 cycles long
hw_rei
// .sbttl "wrkgp - PALcode for wrkgp instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// kgp <- a0 (r16)
//-
CALL_PAL_PRIV(PAL_WRKGP_ENTRY)
Call_Pal_Wrkgp:
nop
mtpr r16, pt_kgp
nop // Pad for pt write->read restriction
nop
hw_rei
// .sbttl "wrusp - PALcode for wrusp instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// usp <- a0 (r16)
//-
CALL_PAL_PRIV(PAL_WRUSP_ENTRY)
Call_Pal_Wrusp:
nop
mtpr r16, pt_usp
nop // Pad possible pt write->read restriction
nop
hw_rei
// .sbttl "wrperfmon - PALcode for wrperfmon instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
//
// Function:
// Various control functions for the onchip performance counters
//
// option selector in r16
// option argument in r17
// returned status in r0
//
//
// r16 = 0 Disable performance monitoring for one or more cpu's
// r17 = 0 disable no counters
// r17 = bitmask disable counters specified in bit mask (1=disable)
//
// r16 = 1 Enable performance monitoring for one or more cpu's
// r17 = 0 enable no counters
// r17 = bitmask enable counters specified in bit mask (1=enable)
//
// r16 = 2 Mux select for one or more cpu's
// r17 = Mux selection (cpu specific)
// <24:19> bc_ctl<pm_mux_sel> field (see spec)
// <31>,<7:4>,<3:0> pmctr <sel0>,<sel1>,<sel2> fields (see spec)
//
// r16 = 3 Options
// r17 = (cpu specific)
// <0> = 0 log all processes
// <0> = 1 log only selected processes
// <30,9,8> mode select - ku,kp,kk
//
// r16 = 4 Interrupt frequency select
// r17 = (cpu specific) indicates interrupt frequencies desired for each
// counter, with "zero interrupts" being an option
// frequency info in r17 bits as defined by PMCTR_CTL<FRQx> below
//
// r16 = 5 Read Counters
// r17 = na
// r0 = value (same format as ev5 pmctr)
// <0> = 0 Read failed
// <0> = 1 Read succeeded
//
// r16 = 6 Write Counters
// r17 = value (same format as ev5 pmctr; all counters written simultaneously)
//
// r16 = 7 Enable performance monitoring for one or more cpu's and reset counter to 0
// r17 = 0 enable no counters
// r17 = bitmask enable & clear counters specified in bit mask (1=enable & clear)
//
//=============================================================================
//Assumptions:
//PMCTR_CTL:
//
// <15:14> CTL0 -- encoded frequency select and enable - CTR0
// <13:12> CTL1 -- " - CTR1
// <11:10> CTL2 -- " - CTR2
//
// <9:8> FRQ0 -- frequency select for CTR0 (no enable info)
// <7:6> FRQ1 -- frequency select for CTR1
// <5:4> FRQ2 -- frequency select for CTR2
//
// <0> all vs. select processes (0=all,1=select)
//
// where
// FRQx<1:0>
// 0 1 disable interrupt
// 1 0 frequency = 65536 (16384 for ctr2)
// 1 1 frequency = 256
// note: FRQx<1:0> = 00 will keep counters from ever being enabled.
//
//=============================================================================
//
CALL_PAL_PRIV(0x0039)
// unsupported in Hudson code .. pboyle Nov/95
CALL_PAL_Wrperfmon:
#if perfmon_debug == 0
// "real" performance monitoring code
cmpeq r16, 1, r0 // check for enable
bne r0, perfmon_en // br if requested to enable
cmpeq r16, 2, r0 // check for mux ctl
bne r0, perfmon_muxctl // br if request to set mux controls
cmpeq r16, 3, r0 // check for options
bne r0, perfmon_ctl // br if request to set options
cmpeq r16, 4, r0 // check for interrupt frequency select
bne r0, perfmon_freq // br if request to change frequency select
cmpeq r16, 5, r0 // check for counter read request
bne r0, perfmon_rd // br if request to read counters
cmpeq r16, 6, r0 // check for counter write request
bne r0, perfmon_wr // br if request to write counters
cmpeq r16, 7, r0 // check for counter clear/enable request
bne r0, perfmon_enclr // br if request to clear/enable counters
beq r16, perfmon_dis // br if requested to disable (r16=0)
br r31, perfmon_unknown // br if unknown request
#else
br r31, pal_perfmon_debug
#endif
// .sbttl "rdusp - PALcode for rdusp instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- usp
//-
CALL_PAL_PRIV(PAL_RDUSP_ENTRY)
Call_Pal_Rdusp:
nop
mfpr r0, pt_usp
hw_rei
CALL_PAL_PRIV(0x003B)
CallPal_OpcDec3B:
br r31, osfpal_calpal_opcdec
// .sbttl "whami - PALcode for whami instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- whami
//-
CALL_PAL_PRIV(PAL_WHAMI_ENTRY)
Call_Pal_Whami:
nop
mfpr r0, pt_whami // Get Whami
extbl r0, 1, r0 // Isolate just whami bits
hw_rei
// .sbttl "retsys - PALcode for retsys instruction"
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
// 00(sp) contains return pc
// 08(sp) contains r29
//
// Function:
// Return from system call.
// mode switched from kern to user.
// stacks swapped, ugp, upc restored.
// r23, r25 junked
//-
CALL_PAL_PRIV(PAL_RETSYS_ENTRY)
Call_Pal_Retsys:
lda r25, osfsf_c_size(sp) // pop stack
bis r25, r31, r14 // touch r25 & r14 to stall mf exc_addr
mfpr r14, exc_addr // save exc_addr in case of fault
ldq r23, osfsf_pc(sp) // get pc
ldq r29, osfsf_gp(sp) // get gp
stl_c r31, -4(sp) // clear lock_flag
lda r11, 1<<osfps_v_mode(r31)// new PS:mode=user
mfpr r30, pt_usp // get users stack
bic r23, 3, r23 // clean return pc
mtpr r31, ev5__ipl // zero ibox IPL - 2 bubbles to hw_rei
mtpr r11, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles
mtpr r11, ev5__ps // set Ibox current mode - 2 bubble to hw_rei
mtpr r23, exc_addr // set return address - 1 bubble to hw_rei
mtpr r25, pt_ksp // save kern stack
rc r31 // clear inter_flag
// pvc_violate 248 // possible hidden mt->mf pt violation ok in callpal
hw_rei_spe // and back
CALL_PAL_PRIV(0x003E)
CallPal_OpcDec3E:
br r31, osfpal_calpal_opcdec
// .sbttl "rti - PALcode for rti instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// 00(sp) -> ps
// 08(sp) -> pc
// 16(sp) -> r29 (gp)
// 24(sp) -> r16 (a0)
// 32(sp) -> r17 (a1)
// 40(sp) -> r18 (a3)
//-
CALL_PAL_PRIV(PAL_RTI_ENTRY)
#ifdef SIMOS
/* called once by platform_tlaser */
.globl Call_Pal_Rti
#endif
Call_Pal_Rti:
lda r25, osfsf_c_size(sp) // get updated sp
bis r25, r31, r14 // touch r14,r25 to stall mf exc_addr
mfpr r14, exc_addr // save PC in case of fault
rc r31 // clear intr_flag
ldq r12, -6*8(r25) // get ps
ldq r13, -5*8(r25) // pc
ldq r18, -1*8(r25) // a2
ldq r17, -2*8(r25) // a1
ldq r16, -3*8(r25) // a0
ldq r29, -4*8(r25) // gp
bic r13, 3, r13 // clean return pc
stl_c r31, -4(r25) // clear lock_flag
and r12, osfps_m_mode, r11 // get mode
mtpr r13, exc_addr // set return address
beq r11, rti_to_kern // br if rti to Kern
br r31, rti_to_user // out of call_pal space
// .sbttl "Start the Unprivileged CALL_PAL Entry Points"
// .sbttl "bpt- PALcode for bpt instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
//
.text 1
// . = 0x3000
CALL_PAL_UNPRIV(PAL_BPT_ENTRY)
Call_Pal_Bpt:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS for stack write
bge r25, CALL_PAL_bpt_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
CALL_PAL_bpt_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mfpr r14, exc_addr // get pc
stq r16, osfsf_a0(sp) // save regs
bis r31, osf_a0_bpt, r16 // set a0
stq r17, osfsf_a1(sp) // a1
br r31, bpt_bchk_common // out of call_pal space
// .sbttl "bugchk- PALcode for bugchk instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
//
CALL_PAL_UNPRIV(PAL_BUGCHK_ENTRY)
Call_Pal_Bugchk:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS for stack write
bge r25, CALL_PAL_bugchk_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
CALL_PAL_bugchk_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mfpr r14, exc_addr // get pc
stq r16, osfsf_a0(sp) // save regs
bis r31, osf_a0_bugchk, r16 // set a0
stq r17, osfsf_a1(sp) // a1
br r31, bpt_bchk_common // out of call_pal space
CALL_PAL_UNPRIV(0x0082)
CallPal_OpcDec82:
br r31, osfpal_calpal_opcdec
// .sbttl "callsys - PALcode for callsys instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Switch mode to kernel and build a callsys stack frame.
// sp = ksp
// gp = kgp
// t8 - t10 (r22-r24) trashed
//
//-
//
CALL_PAL_UNPRIV(PAL_CALLSYS_ENTRY)
Call_Pal_Callsys:
and r11, osfps_m_mode, r24 // get mode
mfpr r22, pt_ksp // get ksp
beq r24, sys_from_kern // sysCall from kern is not allowed
mfpr r12, pt_entsys // get address of callSys routine
//+
// from here on we know we are in user going to Kern
//-
mtpr r31, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles
mtpr r31, ev5__ps // set Ibox current mode - 2 bubble to hw_rei
bis r31, r31, r11 // PS=0 (mode=kern)
mfpr r23, exc_addr // get pc
mtpr r30, pt_usp // save usp
lda sp, 0-osfsf_c_size(r22)// set new sp
stq r29, osfsf_gp(sp) // save user gp/r29
stq r24, osfsf_ps(sp) // save ps
stq r23, osfsf_pc(sp) // save pc
mtpr r12, exc_addr // set address
// 1 cycle to hw_rei
mfpr r29, pt_kgp // get the kern gp/r29
hw_rei_spe // and off we go!
CALL_PAL_UNPRIV(0x0084)
CallPal_OpcDec84:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0085)
CallPal_OpcDec85:
br r31, osfpal_calpal_opcdec
// .sbttl "imb - PALcode for imb instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Flush the writebuffer and flush the Icache
//
//-
//
CALL_PAL_UNPRIV(PAL_IMB_ENTRY)
Call_Pal_Imb:
mb // Clear the writebuffer
mfpr r31, ev5__mcsr // Sync with clear
nop
nop
br r31, pal_ic_flush // Flush Icache
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_UNPRIV(0x0087)
CallPal_OpcDec87:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0088)
CallPal_OpcDec88:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0089)
CallPal_OpcDec89:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008A)
CallPal_OpcDec8A:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008B)
CallPal_OpcDec8B:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008C)
CallPal_OpcDec8C:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008D)
CallPal_OpcDec8D:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008E)
CallPal_OpcDec8E:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x008F)
CallPal_OpcDec8F:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0090)
CallPal_OpcDec90:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0091)
CallPal_OpcDec91:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0092)
CallPal_OpcDec92:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0093)
CallPal_OpcDec93:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0094)
CallPal_OpcDec94:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0095)
CallPal_OpcDec95:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0096)
CallPal_OpcDec96:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0097)
CallPal_OpcDec97:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0098)
CallPal_OpcDec98:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x0099)
CallPal_OpcDec99:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x009A)
CallPal_OpcDec9A:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x009B)
CallPal_OpcDec9B:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x009C)
CallPal_OpcDec9C:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x009D)
CallPal_OpcDec9D:
br r31, osfpal_calpal_opcdec
// .sbttl "rdunique - PALcode for rdunique instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// v0 (r0) <- unique
//
//-
//
CALL_PAL_UNPRIV(PAL_RDUNIQUE_ENTRY)
CALL_PALrdunique_:
mfpr r0, pt_pcbb // get pcb pointer
ldqp r0, osfpcb_q_unique(r0) // get new value
hw_rei
// .sbttl "wrunique - PALcode for wrunique instruction"
//+
//
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// unique <- a0 (r16)
//
//-
//
CALL_PAL_UNPRIV(PAL_WRUNIQUE_ENTRY)
CALL_PAL_Wrunique:
nop
mfpr r12, pt_pcbb // get pcb pointer
stqp r16, osfpcb_q_unique(r12)// get new value
nop // Pad palshadow write
hw_rei // back
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_UNPRIV(0x00A0)
CallPal_OpcDecA0:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A1)
CallPal_OpcDecA1:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A2)
CallPal_OpcDecA2:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A3)
CallPal_OpcDecA3:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A4)
CallPal_OpcDecA4:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A5)
CallPal_OpcDecA5:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A6)
CallPal_OpcDecA6:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A7)
CallPal_OpcDecA7:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A8)
CallPal_OpcDecA8:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00A9)
CallPal_OpcDecA9:
br r31, osfpal_calpal_opcdec
// .sbttl "gentrap - PALcode for gentrap instruction"
//+
// CALL_PAL_gentrap:
// Entry:
// Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// Build stack frame
// a0 <- code
// a1 <- unpred
// a2 <- unpred
// vector via entIF
//
//-
CALL_PAL_UNPRIV(0x00AA)
// unsupported in Hudson code .. pboyle Nov/95
CALL_PAL_gentrap:
sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
mtpr r31, ev5__ps // Set Ibox current mode to kernel
bis r11, r31, r12 // Save PS for stack write
bge r25, CALL_PAL_gentrap_10_ // no stack swap needed if cm=kern
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r30, pt_usp // save user stack
bis r31, r31, r11 // Set new PS
mfpr r30, pt_ksp
CALL_PAL_gentrap_10_:
lda sp, 0-osfsf_c_size(sp)// allocate stack space
mfpr r14, exc_addr // get pc
stq r16, osfsf_a0(sp) // save regs
bis r31, osf_a0_gentrap, r16// set a0
stq r17, osfsf_a1(sp) // a1
br r31, bpt_bchk_common // out of call_pal space
// .sbttl "CALL_PAL OPCDECs"
CALL_PAL_UNPRIV(0x00AB)
CallPal_OpcDecAB:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00AC)
CallPal_OpcDecAC:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00AD)
CallPal_OpcDecAD:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00AE)
CallPal_OpcDecAE:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00AF)
CallPal_OpcDecAF:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B0)
CallPal_OpcDecB0:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B1)
CallPal_OpcDecB1:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B2)
CallPal_OpcDecB2:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B3)
CallPal_OpcDecB3:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B4)
CallPal_OpcDecB4:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B5)
CallPal_OpcDecB5:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B6)
CallPal_OpcDecB6:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B7)
CallPal_OpcDecB7:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B8)
CallPal_OpcDecB8:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00B9)
CallPal_OpcDecB9:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BA)
CallPal_OpcDecBA:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BB)
CallPal_OpcDecBB:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BC)
CallPal_OpcDecBC:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BD)
CallPal_OpcDecBD:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BE)
CallPal_OpcDecBE:
br r31, osfpal_calpal_opcdec
CALL_PAL_UNPRIV(0x00BF)
CallPal_OpcDecBF:
br r31, osfpal_calpal_opcdec
/*======================================================================*/
/* OSF/1 CALL_PAL CONTINUATION AREA */
/*======================================================================*/
.text 2
. = 0x4000
// .sbttl "Continuation of MTPR_PERFMON"
ALIGN_BLOCK
#if perfmon_debug == 0
// "real" performance monitoring code
// mux ctl
perfmon_muxctl:
lda r8, 1(r31) // get a 1
sll r8, pmctr_v_sel0, r8 // move to sel0 position
or r8, ((0xf<<pmctr_v_sel1) | (0xf<<pmctr_v_sel2)), r8 // build mux select mask
and r17, r8, r25 // isolate pmctr mux select bits
mfpr r0, ev5__pmctr
bic r0, r8, r0 // clear old mux select bits
or r0,r25, r25 // or in new mux select bits
mtpr r25, ev5__pmctr
// ok, now tackle cbox mux selects
ldah r14, 0xfff0(r31)
zap r14, 0xE0, r14 // Get Cbox IPR base
//orig get_bc_ctl_shadow r16 // bc_ctl returned in lower longword
// adapted from ev5_pal_macros.mar
mfpr r16, pt_impure
lda r16, CNS_Q_IPR(r16)
RESTORE_SHADOW(r16,CNS_Q_BC_CTL,r16);
lda r8, 0x3F(r31) // build mux select mask
sll r8, bc_ctl_v_pm_mux_sel, r8
and r17, r8, r25 // isolate bc_ctl mux select bits
bic r16, r8, r16 // isolate old mux select bits
or r16, r25, r25 // create new bc_ctl
mb // clear out cbox for future ipr write
stqp r25, ev5__bc_ctl(r14) // store to cbox ipr
mb // clear out cbox for future ipr write
//orig update_bc_ctl_shadow r25, r16 // r25=value, r16-overwritten with adjusted impure ptr
// adapted from ev5_pal_macros.mar
mfpr r16, pt_impure
lda r16, CNS_Q_IPR(r16)
SAVE_SHADOW(r25,CNS_Q_BC_CTL,r16);
br r31, perfmon_success
// requested to disable perf monitoring
perfmon_dis:
mfpr r14, ev5__pmctr // read ibox pmctr ipr
perfmon_dis_ctr0: // and begin with ctr0
blbc r17, perfmon_dis_ctr1 // do not disable ctr0
lda r8, 3(r31)
sll r8, pmctr_v_ctl0, r8
bic r14, r8, r14 // disable ctr0
perfmon_dis_ctr1:
srl r17, 1, r17
blbc r17, perfmon_dis_ctr2 // do not disable ctr1
lda r8, 3(r31)
sll r8, pmctr_v_ctl1, r8
bic r14, r8, r14 // disable ctr1
perfmon_dis_ctr2:
srl r17, 1, r17
blbc r17, perfmon_dis_update // do not disable ctr2
lda r8, 3(r31)
sll r8, pmctr_v_ctl2, r8
bic r14, r8, r14 // disable ctr2
perfmon_dis_update:
mtpr r14, ev5__pmctr // update pmctr ipr
//;the following code is not needed for ev5 pass2 and later, but doesn't hurt anything to leave in
// adapted from ev5_pal_macros.mar
//orig get_pmctr_ctl r8, r25 // pmctr_ctl bit in r8. adjusted impure pointer in r25
mfpr r25, pt_impure
lda r25, CNS_Q_IPR(r25)
RESTORE_SHADOW(r8,CNS_Q_PM_CTL,r25);
lda r17, 0x3F(r31) // build mask
sll r17, pmctr_v_ctl2, r17 // shift mask to correct position
and r14, r17, r14 // isolate ctl bits
bic r8, r17, r8 // clear out old ctl bits
or r14, r8, r14 // create shadow ctl bits
//orig store_reg1 pmctr_ctl, r14, r25, ipr=1 // update pmctr_ctl register
//adjusted impure pointer still in r25
SAVE_SHADOW(r14,CNS_Q_PM_CTL,r25);
br r31, perfmon_success
// requested to enable perf monitoring
//;the following code can be greatly simplified for pass2, but should work fine as is.
perfmon_enclr:
lda r9, 1(r31) // set enclr flag
br perfmon_en_cont
perfmon_en:
bis r31, r31, r9 // clear enclr flag
perfmon_en_cont:
mfpr r8, pt_pcbb // get PCB base
//orig get_pmctr_ctl r25, r25
mfpr r25, pt_impure
lda r25, CNS_Q_IPR(r25)
RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r25);
ldqp r16, osfpcb_q_fen(r8) // read DAT/PME/FEN quadword
mfpr r14, ev5__pmctr // read ibox pmctr ipr
srl r16, osfpcb_v_pme, r16 // get pme bit
mfpr r13, icsr
and r16, 1, r16 // isolate pme bit
// this code only needed in pass2 and later
//orig sget_addr r12, 1<<icsr_v_pmp, r31
lda r12, 1<<icsr_v_pmp(r31) // pb
bic r13, r12, r13 // clear pmp bit
sll r16, icsr_v_pmp, r12 // move pme bit to icsr<pmp> position
or r12, r13, r13 // new icsr with icsr<pmp> bit set/clear
ev5_pass2 mtpr r13, icsr // update icsr
#if ev5_p1 != 0
lda r12, 1(r31)
cmovlbc r25, r12, r16 // r16<0> set if either pme=1 or sprocess=0 (sprocess in bit 0 of r25)
#else
bis r31, 1, r16 // set r16<0> on pass2 to update pmctr always (icsr provides real enable)
#endif
sll r25, 6, r25 // shift frequency bits into pmctr_v_ctl positions
bis r14, r31, r13 // copy pmctr
perfmon_en_ctr0: // and begin with ctr0
blbc r17, perfmon_en_ctr1 // do not enable ctr0
blbc r9, perfmon_en_noclr0 // enclr flag set, clear ctr0 field
lda r8, 0xffff(r31)
zapnot r8, 3, r8 // ctr0<15:0> mask
sll r8, pmctr_v_ctr0, r8
bic r14, r8, r14 // clear ctr bits
bic r13, r8, r13 // clear ctr bits
perfmon_en_noclr0:
//orig get_addr r8, 3<<pmctr_v_ctl0, r31
LDLI(r8, (3<<pmctr_v_ctl0))
and r25, r8, r12 //isolate frequency select bits for ctr0
bic r14, r8, r14 // clear ctl0 bits in preparation for enabling
or r14,r12,r14 // or in new ctl0 bits
perfmon_en_ctr1: // enable ctr1
srl r17, 1, r17 // get ctr1 enable
blbc r17, perfmon_en_ctr2 // do not enable ctr1
blbc r9, perfmon_en_noclr1 // if enclr flag set, clear ctr1 field
lda r8, 0xffff(r31)
zapnot r8, 3, r8 // ctr1<15:0> mask
sll r8, pmctr_v_ctr1, r8
bic r14, r8, r14 // clear ctr bits
bic r13, r8, r13 // clear ctr bits
perfmon_en_noclr1:
//orig get_addr r8, 3<<pmctr_v_ctl1, r31
LDLI(r8, (3<<pmctr_v_ctl1))
and r25, r8, r12 //isolate frequency select bits for ctr1
bic r14, r8, r14 // clear ctl1 bits in preparation for enabling
or r14,r12,r14 // or in new ctl1 bits
perfmon_en_ctr2: // enable ctr2
srl r17, 1, r17 // get ctr2 enable
blbc r17, perfmon_en_return // do not enable ctr2 - return
blbc r9, perfmon_en_noclr2 // if enclr flag set, clear ctr2 field
lda r8, 0x3FFF(r31) // ctr2<13:0> mask
sll r8, pmctr_v_ctr2, r8
bic r14, r8, r14 // clear ctr bits
bic r13, r8, r13 // clear ctr bits
perfmon_en_noclr2:
//orig get_addr r8, 3<<pmctr_v_ctl2, r31
LDLI(r8, (3<<pmctr_v_ctl2))
and r25, r8, r12 //isolate frequency select bits for ctr2
bic r14, r8, r14 // clear ctl2 bits in preparation for enabling
or r14,r12,r14 // or in new ctl2 bits
perfmon_en_return:
cmovlbs r16, r14, r13 // if pme enabled, move enables into pmctr
// else only do the counter clears
mtpr r13, ev5__pmctr // update pmctr ipr
//;this code not needed for pass2 and later, but does not hurt to leave it in
lda r8, 0x3F(r31)
//orig get_pmctr_ctl r25, r12 // read pmctr ctl; r12=adjusted impure pointer
mfpr r12, pt_impure
lda r12, CNS_Q_IPR(r12)
RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r12);
sll r8, pmctr_v_ctl2, r8 // build ctl mask
and r8, r14, r14 // isolate new ctl bits
bic r25, r8, r25 // clear out old ctl value
or r25, r14, r14 // create new pmctr_ctl
//orig store_reg1 pmctr_ctl, r14, r12, ipr=1
SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr
br r31, perfmon_success
// options...
perfmon_ctl:
// set mode
//orig get_pmctr_ctl r14, r12 // read shadow pmctr ctl; r12=adjusted impure pointer
mfpr r12, pt_impure
lda r12, CNS_Q_IPR(r12)
RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12);
//orig get_addr r8, (1<<pmctr_v_killu) | (1<<pmctr_v_killp) | (1<<pmctr_v_killk), r31 // build mode mask for pmctr register
LDLI(r8, ((1<<pmctr_v_killu) | (1<<pmctr_v_killp) | (1<<pmctr_v_killk)))
mfpr r0, ev5__pmctr
and r17, r8, r25 // isolate pmctr mode bits
bic r0, r8, r0 // clear old mode bits
or r0, r25, r25 // or in new mode bits
mtpr r25, ev5__pmctr
//;the following code will only be used in pass2, but should not hurt anything if run in pass1.
mfpr r8, icsr
lda r25, 1<<icsr_v_pma(r31) // set icsr<pma> if r17<0>=0
bic r8, r25, r8 // clear old pma bit
cmovlbs r17, r31, r25 // and clear icsr<pma> if r17<0>=1
or r8, r25, r8
ev5_pass2 mtpr r8, icsr // 4 bubbles to hw_rei
mfpr r31, pt0 // pad icsr write
mfpr r31, pt0 // pad icsr write
//;the following code not needed for pass2 and later, but should work anyway.
bis r14, 1, r14 // set for select processes
blbs r17, perfmon_sp // branch if select processes
bic r14, 1, r14 // all processes
perfmon_sp:
//orig store_reg1 pmctr_ctl, r14, r12, ipr=1 // update pmctr_ctl register
SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr
br r31, perfmon_success
// counter frequency select
perfmon_freq:
//orig get_pmctr_ctl r14, r12 // read shadow pmctr ctl; r12=adjusted impure pointer
mfpr r12, pt_impure
lda r12, CNS_Q_IPR(r12)
RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12);
lda r8, 0x3F(r31)
//orig sll r8, pmctr_ctl_v_frq2, r8 // build mask for frequency select field
// I guess this should be a shift of 4 bits from the above control register structure .. pb
#define pmctr_ctl_v_frq2_SHIFT 4
sll r8, pmctr_ctl_v_frq2_SHIFT, r8 // build mask for frequency select field
and r8, r17, r17
bic r14, r8, r14 // clear out old frequency select bits
or r17, r14, r14 // or in new frequency select info
//orig store_reg1 pmctr_ctl, r14, r12, ipr=1 // update pmctr_ctl register
SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr
br r31, perfmon_success
// read counters
perfmon_rd:
mfpr r0, ev5__pmctr
or r0, 1, r0 // or in return status
hw_rei // back to user
// write counters
perfmon_wr:
mfpr r14, ev5__pmctr
lda r8, 0x3FFF(r31) // ctr2<13:0> mask
sll r8, pmctr_v_ctr2, r8
//orig get_addr r9, 0xFFFFFFFF, r31, verify=0 // ctr2<15:0>,ctr1<15:0> mask
LDLI(r9, (0xFFFFFFFF))
sll r9, pmctr_v_ctr1, r9
or r8, r9, r8 // or ctr2, ctr1, ctr0 mask
bic r14, r8, r14 // clear ctr fields
and r17, r8, r25 // clear all but ctr fields
or r25, r14, r14 // write ctr fields
mtpr r14, ev5__pmctr // update pmctr ipr
mfpr r31, pt0 // pad pmctr write (needed only to keep PVC happy)
perfmon_success:
or r31, 1, r0 // set success
hw_rei // back to user
perfmon_unknown:
or r31, r31, r0 // set fail
hw_rei // back to user
#else
// end of "real code", start of debug code
//+
// Debug environment:
// (in pass2, always set icsr<pma> to ensure master counter enable is on)
// R16 = 0 Write to on-chip performance monitor ipr
// r17 = on-chip ipr
// r0 = return value of read of on-chip performance monitor ipr
// R16 = 1 Setup Cbox mux selects
// r17 = Cbox mux selects in same position as in bc_ctl ipr.
// r0 = return value of read of on-chip performance monitor ipr
//
//-
pal_perfmon_debug:
mfpr r8, icsr
lda r9, 1<<icsr_v_pma(r31)
bis r8, r9, r8
mtpr r8, icsr
mfpr r0, ev5__pmctr // read old value
bne r16, cbox_mux_sel
mtpr r17, ev5__pmctr // update pmctr ipr
br r31, end_pm
cbox_mux_sel:
// ok, now tackle cbox mux selects
ldah r14, 0xfff0(r31)
zap r14, 0xE0, r14 // Get Cbox IPR base
//orig get_bc_ctl_shadow r16 // bc_ctl returned
mfpr r16, pt_impure
lda r16, CNS_Q_IPR(r16)
RESTORE_SHADOW(r16,CNS_Q_BC_CTL,r16);
lda r8, 0x3F(r31) // build mux select mask
sll r8, BC_CTL_V_PM_MUX_SEL, r8
and r17, r8, r25 // isolate bc_ctl mux select bits
bic r16, r8, r16 // isolate old mux select bits
or r16, r25, r25 // create new bc_ctl
mb // clear out cbox for future ipr write
stqp r25, ev5__bc_ctl(r14) // store to cbox ipr
mb // clear out cbox for future ipr write
//orig update_bc_ctl_shadow r25, r16 // r25=value, r16-overwritten with adjusted impure ptr
mfpr r16, pt_impure
lda r16, CNS_Q_IPR(r16)
SAVE_SHADOW(r25,CNS_Q_BC_CTL,r16);
end_pm: hw_rei
#endif
//;The following code is a workaround for a cpu bug where Istream prefetches to
//;super-page address space in user mode may escape off-chip.
#if spe_fix != 0
ALIGN_BLOCK
hw_rei_update_spe:
mfpr r12, pt_misc // get previous mode
srl r11, osfps_v_mode, r10 // isolate current mode bit
and r10, 1, r10
extbl r12, 7, r8 // get previous mode field
and r8, 1, r8 // isolate previous mode bit
cmpeq r10, r8, r8 // compare previous and current modes
beq r8, hw_rei_update_spe_5_
hw_rei // if same, just return
hw_rei_update_spe_5_:
#if fill_err_hack != 0
fill_error_hack
#endif
mfpr r8, icsr // get current icsr value
ldah r9, (2<<(icsr_v_spe-16))(r31) // get spe bit mask
bic r8, r9, r8 // disable spe
xor r10, 1, r9 // flip mode for new spe bit
sll r9, icsr_v_spe+1, r9 // shift into position
bis r8, r9, r8 // enable/disable spe
lda r9, 1(r31) // now update our flag
sll r9, pt_misc_v_cm, r9 // previous mode saved bit mask
bic r12, r9, r12 // clear saved previous mode
sll r10, pt_misc_v_cm, r9 // current mode saved bit mask
bis r12, r9, r12 // set saved current mode
mtpr r12, pt_misc // update pt_misc
mtpr r8, icsr // update icsr
#if osf_chm_fix != 0
blbc r10, hw_rei_update_spe_10_ // branch if not user mode
mb // ensure no outstanding fills
lda r12, 1<<dc_mode_v_dc_ena(r31) // User mode
mtpr r12, dc_mode // Turn on dcache
mtpr r31, dc_flush // and flush it
br r31, pal_ic_flush
hw_rei_update_spe_10_: mfpr r9, pt_pcbb // Kernel mode
ldqp r9, osfpcb_q_Fen(r9) // get FEN
blbc r9, pal_ic_flush // return if FP disabled
mb // ensure no outstanding fills
mtpr r31, dc_mode // turn off dcache
#endif
br r31, pal_ic_flush // Pal restriction - must flush Icache if changing ICSR<SPE>
#endif