gem5/src/arch/arm/interrupts.hh

292 lines
9.8 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2010, 2012-2013 ARM Limited
2010-06-02 19:58:16 +02:00
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#ifndef __ARCH_ARM_INTERRUPT_HH__
#define __ARCH_ARM_INTERRUPT_HH__
#include "arch/arm/faults.hh"
#include "arch/arm/isa_traits.hh"
2010-06-02 19:58:16 +02:00
#include "arch/arm/miscregs.hh"
#include "arch/arm/registers.hh"
#include "arch/arm/utility.hh"
#include "cpu/thread_context.hh"
#include "debug/Interrupt.hh"
#include "params/ArmInterrupts.hh"
#include "sim/sim_object.hh"
namespace ArmISA
{
class Interrupts : public SimObject
{
private:
BaseCPU * cpu;
2010-06-02 19:58:16 +02:00
bool interrupts[NumInterruptTypes];
uint64_t intStatus;
public:
void
setCPU(BaseCPU * _cpu)
{
cpu = _cpu;
}
typedef ArmInterruptsParams Params;
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
Interrupts(Params * p) : SimObject(p), cpu(NULL)
{
clearAll();
}
void
post(int int_num, int index)
{
2010-06-02 19:58:16 +02:00
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= NumInterruptTypes)
panic("int_num out of bounds\n");
if (index != 0)
panic("No support for other interrupt indexes\n");
interrupts[int_num] = true;
intStatus |= ULL(1) << int_num;
}
void
clear(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
2010-06-02 19:58:16 +02:00
if (int_num < 0 || int_num >= NumInterruptTypes)
panic("int_num out of bounds\n");
if (index != 0)
panic("No support for other interrupt indexes\n");
interrupts[int_num] = false;
intStatus &= ~(ULL(1) << int_num);
}
void
clearAll()
{
2010-06-02 19:58:16 +02:00
DPRINTF(Interrupt, "Interrupts all cleared\n");
intStatus = 0;
2010-06-02 19:58:16 +02:00
memset(interrupts, 0, sizeof(interrupts));
}
enum InterruptMask {
INT_MASK_M, // masked (subject to PSTATE.{A,I,F} mask bit
INT_MASK_T, // taken regardless of mask
INT_MASK_P // pending
};
bool takeInt(ThreadContext *tc, InterruptTypes int_type) const;
bool
checkInterrupts(ThreadContext *tc) const
{
HCR hcr = tc->readMiscReg(MISCREG_HCR);
if (!(intStatus || hcr.va || hcr.vi || hcr.vf))
2010-06-02 19:58:16 +02:00
return false;
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
SCR scr = tc->readMiscReg(MISCREG_SCR);
bool isHypMode = cpsr.mode == MODE_HYP;
bool isSecure = inSecureState(scr, cpsr);
bool allowVIrq = !cpsr.i && hcr.imo && !isSecure && !isHypMode;
bool allowVFiq = !cpsr.f && hcr.fmo && !isSecure && !isHypMode;
bool allowVAbort = !cpsr.a && hcr.amo && !isSecure && !isHypMode;
if ( !(intStatus || (hcr.vi && allowVIrq) || (hcr.vf && allowVFiq) ||
(hcr.va && allowVAbort)) )
return false;
bool take_irq = takeInt(tc, INT_IRQ);
bool take_fiq = takeInt(tc, INT_FIQ);
bool take_ea = takeInt(tc, INT_ABT);
return ((interrupts[INT_IRQ] && take_irq) ||
(interrupts[INT_FIQ] && take_fiq) ||
(interrupts[INT_ABT] && take_ea) ||
((interrupts[INT_VIRT_IRQ] || hcr.vi) && allowVIrq) ||
((interrupts[INT_VIRT_FIQ] || hcr.vf) && allowVFiq) ||
(hcr.va && allowVAbort) ||
(interrupts[INT_RST]) ||
(interrupts[INT_SEV])
);
}
2011-05-05 03:38:28 +02:00
/**
* This function is used to check if a wfi operation should sleep. If there
* is an interrupt pending, even if it's masked, wfi doesn't sleep.
* @return any interrupts pending
*/
bool
checkWfiWake(HCR hcr, CPSR cpsr, SCR scr) const
{
uint64_t maskedIntStatus;
bool virtWake;
maskedIntStatus = intStatus & ~((1 << INT_VIRT_IRQ) |
(1 << INT_VIRT_FIQ));
virtWake = (hcr.vi || interrupts[INT_VIRT_IRQ]) && hcr.imo;
virtWake |= (hcr.vf || interrupts[INT_VIRT_FIQ]) && hcr.fmo;
virtWake |= hcr.va && hcr.amo;
virtWake &= (cpsr.mode != MODE_HYP) && !inSecureState(scr, cpsr);
return maskedIntStatus || virtWake;
}
uint32_t
getISR(HCR hcr, CPSR cpsr, SCR scr)
2011-05-05 03:38:28 +02:00
{
bool useHcrMux;
CPSR isr = 0; // ARM ARM states ISR reg uses same bit possitions as CPSR
useHcrMux = (cpsr.mode != MODE_HYP) && !inSecureState(scr, cpsr);
isr.i = (useHcrMux & hcr.imo) ? (interrupts[INT_VIRT_IRQ] || hcr.vi)
: interrupts[INT_IRQ];
isr.f = (useHcrMux & hcr.fmo) ? (interrupts[INT_VIRT_FIQ] || hcr.vf)
: interrupts[INT_FIQ];
isr.a = (useHcrMux & hcr.amo) ? hcr.va : interrupts[INT_ABT];
return isr;
2011-05-05 03:38:28 +02:00
}
/**
* Check the state of a particular interrupt, ignoring CPSR masks.
*
* This method is primarily used when running the target CPU in a
* hardware VM (e.g., KVM) to check if interrupts should be
* delivered upon guest entry.
*
* @param interrupt Interrupt type to check the state of.
* @return true if the interrupt is asserted, false otherwise.
*/
bool
checkRaw(InterruptTypes interrupt) const
{
if (interrupt >= NumInterruptTypes)
panic("Interrupt number out of range.\n");
return interrupts[interrupt];
}
2011-05-05 03:38:28 +02:00
Fault
getInterrupt(ThreadContext *tc)
{
assert(checkInterrupts(tc));
HCR hcr = tc->readMiscReg(MISCREG_HCR);
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
SCR scr = tc->readMiscReg(MISCREG_SCR);
// Calculate a few temp vars so we can work out if there's a pending
// virtual interrupt, and if its allowed to happen
// ARM ARM Issue C section B1.9.9, B1.9.11, and B1.9.13
bool isHypMode = cpsr.mode == MODE_HYP;
bool isSecure = inSecureState(scr, cpsr);
bool allowVIrq = !cpsr.i && hcr.imo && !isSecure && !isHypMode;
bool allowVFiq = !cpsr.f && hcr.fmo && !isSecure && !isHypMode;
bool allowVAbort = !cpsr.a && hcr.amo && !isSecure && !isHypMode;
bool take_irq = takeInt(tc, INT_IRQ);
bool take_fiq = takeInt(tc, INT_FIQ);
bool take_ea = takeInt(tc, INT_ABT);
if (interrupts[INT_IRQ] && take_irq)
return std::make_shared<Interrupt>();
if ((interrupts[INT_VIRT_IRQ] || hcr.vi) && allowVIrq)
return std::make_shared<VirtualInterrupt>();
if (interrupts[INT_FIQ] && take_fiq)
return std::make_shared<FastInterrupt>();
if ((interrupts[INT_VIRT_FIQ] || hcr.vf) && allowVFiq)
return std::make_shared<VirtualFastInterrupt>();
if (interrupts[INT_ABT] && take_ea)
return std::make_shared<SystemError>();
if (hcr.va && allowVAbort)
return std::make_shared<VirtualDataAbort>(
0, TlbEntry::DomainType::NoAccess, false,
ArmFault::AsynchronousExternalAbort);
2010-06-02 19:58:16 +02:00
if (interrupts[INT_RST])
return std::make_shared<Reset>();
if (interrupts[INT_SEV])
return std::make_shared<ArmSev>();
2010-06-02 19:58:16 +02:00
panic("intStatus and interrupts not in sync\n");
}
void
updateIntrInfo(ThreadContext *tc)
{
2010-06-02 19:58:16 +02:00
; // nothing to do
}
void
sim: Refactor the serialization base class Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-07-07 10:51:03 +02:00
serialize(CheckpointOut &cp) const
{
2010-06-02 19:58:16 +02:00
SERIALIZE_ARRAY(interrupts, NumInterruptTypes);
SERIALIZE_SCALAR(intStatus);
}
void
sim: Refactor the serialization base class Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2015-07-07 10:51:03 +02:00
unserialize(CheckpointIn &cp)
{
2010-06-02 19:58:16 +02:00
UNSERIALIZE_ARRAY(interrupts, NumInterruptTypes);
UNSERIALIZE_SCALAR(intStatus);
}
};
} // namespace ARM_ISA
#endif // __ARCH_ARM_INTERRUPT_HH__