gem5/src/mem/translating_port.cc

198 lines
5.3 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Steve Reinhardt
*/
#include <string>
#include "base/chunk_generator.hh"
#include "mem/port.hh"
#include "mem/translating_port.hh"
#include "mem/page_table.hh"
#include "sim/process.hh"
using namespace TheISA;
TranslatingPort::TranslatingPort(const std::string &_name,
Process *p, AllocType alloc)
: FunctionalPort(_name), pTable(p->pTable), process(p),
allocating(alloc)
{ }
TranslatingPort::~TranslatingPort()
{ }
bool
TranslatingPort::tryReadBlob(Addr addr, uint8_t *p, int size)
{
Addr paddr;
int prevSize = 0;
for (ChunkGenerator gen(addr, size, VMPageSize); !gen.done(); gen.next()) {
if (!pTable->translate(gen.addr(),paddr))
return false;
Port::readBlob(paddr, p + prevSize, gen.size());
prevSize += gen.size();
}
return true;
}
void
TranslatingPort::readBlob(Addr addr, uint8_t *p, int size)
{
if (!tryReadBlob(addr, p, size))
fatal("readBlob(0x%x, ...) failed", addr);
}
bool
TranslatingPort::tryWriteBlob(Addr addr, uint8_t *p, int size)
{
Addr paddr;
int prevSize = 0;
for (ChunkGenerator gen(addr, size, VMPageSize); !gen.done(); gen.next()) {
if (!pTable->translate(gen.addr(), paddr)) {
if (allocating == Always) {
pTable->allocate(roundDown(gen.addr(), VMPageSize),
VMPageSize);
} else if (allocating == NextPage) {
// check if we've accessed the next page on the stack
if (!process->checkAndAllocNextPage(gen.addr()))
panic("Page table fault when accessing virtual address %#x "
"during functional write\n", gen.addr());
} else {
return false;
}
pTable->translate(gen.addr(), paddr);
}
Port::writeBlob(paddr, p + prevSize, gen.size());
prevSize += gen.size();
}
return true;
}
Simple program runs with sendAtomic! Ignoring returned latency for now. Refactored loadSections in ObjectFile hierarchy. base/loader/aout_object.cc: base/loader/aout_object.hh: base/loader/ecoff_object.cc: base/loader/ecoff_object.hh: base/loader/elf_object.cc: base/loader/elf_object.hh: base/loader/object_file.hh: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. base/loader/object_file.cc: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. Also explicitly load BSS now since we need to allocate the translations for it in syscall emulation. cpu/base.hh: Don't need memPort (just pass port in to ExecContext constructor). cpu/exec_context.cc: cpu/exec_context.hh: mem/port.cc: mem/translating_port.cc: mem/translating_port.hh: Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.cc: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Several more minor bug fixes. Works for simple program with SIMPLE_CPU_MEM_IMMEDIATE model now. Probably have memory leaks with SIMPLE_CPU_MEM_TIMING (if it works at all). Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.hh: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Pass syscall emulation Port into constructor instead of getting it from BaseCPU. mem/physical.cc: Set packet result field. --HG-- extra : convert_revision : 359d0ebe4b4665867f4e26e7394ec0f1d17cfc26
2006-03-02 16:31:48 +01:00
void
TranslatingPort::writeBlob(Addr addr, uint8_t *p, int size)
{
if (!tryWriteBlob(addr, p, size))
fatal("writeBlob(0x%x, ...) failed", addr);
}
bool
TranslatingPort::tryMemsetBlob(Addr addr, uint8_t val, int size)
{
Addr paddr;
for (ChunkGenerator gen(addr, size, VMPageSize); !gen.done(); gen.next()) {
Simple program runs with sendAtomic! Ignoring returned latency for now. Refactored loadSections in ObjectFile hierarchy. base/loader/aout_object.cc: base/loader/aout_object.hh: base/loader/ecoff_object.cc: base/loader/ecoff_object.hh: base/loader/elf_object.cc: base/loader/elf_object.hh: base/loader/object_file.hh: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. base/loader/object_file.cc: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. Also explicitly load BSS now since we need to allocate the translations for it in syscall emulation. cpu/base.hh: Don't need memPort (just pass port in to ExecContext constructor). cpu/exec_context.cc: cpu/exec_context.hh: mem/port.cc: mem/translating_port.cc: mem/translating_port.hh: Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.cc: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Several more minor bug fixes. Works for simple program with SIMPLE_CPU_MEM_IMMEDIATE model now. Probably have memory leaks with SIMPLE_CPU_MEM_TIMING (if it works at all). Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.hh: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Pass syscall emulation Port into constructor instead of getting it from BaseCPU. mem/physical.cc: Set packet result field. --HG-- extra : convert_revision : 359d0ebe4b4665867f4e26e7394ec0f1d17cfc26
2006-03-02 16:31:48 +01:00
if (!pTable->translate(gen.addr(), paddr)) {
if (allocating == Always) {
Simple program runs with sendAtomic! Ignoring returned latency for now. Refactored loadSections in ObjectFile hierarchy. base/loader/aout_object.cc: base/loader/aout_object.hh: base/loader/ecoff_object.cc: base/loader/ecoff_object.hh: base/loader/elf_object.cc: base/loader/elf_object.hh: base/loader/object_file.hh: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. base/loader/object_file.cc: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. Also explicitly load BSS now since we need to allocate the translations for it in syscall emulation. cpu/base.hh: Don't need memPort (just pass port in to ExecContext constructor). cpu/exec_context.cc: cpu/exec_context.hh: mem/port.cc: mem/translating_port.cc: mem/translating_port.hh: Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.cc: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Several more minor bug fixes. Works for simple program with SIMPLE_CPU_MEM_IMMEDIATE model now. Probably have memory leaks with SIMPLE_CPU_MEM_TIMING (if it works at all). Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.hh: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Pass syscall emulation Port into constructor instead of getting it from BaseCPU. mem/physical.cc: Set packet result field. --HG-- extra : convert_revision : 359d0ebe4b4665867f4e26e7394ec0f1d17cfc26
2006-03-02 16:31:48 +01:00
pTable->allocate(roundDown(gen.addr(), VMPageSize),
VMPageSize);
pTable->translate(gen.addr(), paddr);
} else {
return false;
Simple program runs with sendAtomic! Ignoring returned latency for now. Refactored loadSections in ObjectFile hierarchy. base/loader/aout_object.cc: base/loader/aout_object.hh: base/loader/ecoff_object.cc: base/loader/ecoff_object.hh: base/loader/elf_object.cc: base/loader/elf_object.hh: base/loader/object_file.hh: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. base/loader/object_file.cc: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. Also explicitly load BSS now since we need to allocate the translations for it in syscall emulation. cpu/base.hh: Don't need memPort (just pass port in to ExecContext constructor). cpu/exec_context.cc: cpu/exec_context.hh: mem/port.cc: mem/translating_port.cc: mem/translating_port.hh: Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.cc: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Several more minor bug fixes. Works for simple program with SIMPLE_CPU_MEM_IMMEDIATE model now. Probably have memory leaks with SIMPLE_CPU_MEM_TIMING (if it works at all). Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.hh: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Pass syscall emulation Port into constructor instead of getting it from BaseCPU. mem/physical.cc: Set packet result field. --HG-- extra : convert_revision : 359d0ebe4b4665867f4e26e7394ec0f1d17cfc26
2006-03-02 16:31:48 +01:00
}
}
Port::memsetBlob(paddr, val, gen.size());
}
return true;
}
Simple program runs with sendAtomic! Ignoring returned latency for now. Refactored loadSections in ObjectFile hierarchy. base/loader/aout_object.cc: base/loader/aout_object.hh: base/loader/ecoff_object.cc: base/loader/ecoff_object.hh: base/loader/elf_object.cc: base/loader/elf_object.hh: base/loader/object_file.hh: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. base/loader/object_file.cc: Have each section record a pointer to image data. This allows us to move common loadSections code into ObjectFile. Also explicitly load BSS now since we need to allocate the translations for it in syscall emulation. cpu/base.hh: Don't need memPort (just pass port in to ExecContext constructor). cpu/exec_context.cc: cpu/exec_context.hh: mem/port.cc: mem/translating_port.cc: mem/translating_port.hh: Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.cc: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Several more minor bug fixes. Works for simple program with SIMPLE_CPU_MEM_IMMEDIATE model now. Probably have memory leaks with SIMPLE_CPU_MEM_TIMING (if it works at all). Pass syscall emulation Port into constructor instead of getting it from BaseCPU. cpu/simple/cpu.hh: Explicitly choose one of three timing models. Statically allocate request and packet objects when possible. Pass syscall emulation Port into constructor instead of getting it from BaseCPU. mem/physical.cc: Set packet result field. --HG-- extra : convert_revision : 359d0ebe4b4665867f4e26e7394ec0f1d17cfc26
2006-03-02 16:31:48 +01:00
void
TranslatingPort::memsetBlob(Addr addr, uint8_t val, int size)
{
if (!tryMemsetBlob(addr, val, size))
fatal("memsetBlob(0x%x, ...) failed", addr);
}
bool
TranslatingPort::tryWriteString(Addr addr, const char *str)
{
Addr paddr,vaddr;
uint8_t c;
vaddr = addr;
do {
c = *str++;
if (!pTable->translate(vaddr++,paddr))
return false;
Port::writeBlob(paddr, &c, 1);
} while (c);
return true;
}
void
TranslatingPort::writeString(Addr addr, const char *str)
{
if (!tryWriteString(addr, str))
fatal("writeString(0x%x, ...) failed", addr);
}
bool
TranslatingPort::tryReadString(std::string &str, Addr addr)
{
Addr paddr,vaddr;
uint8_t c;
vaddr = addr;
do {
if (!pTable->translate(vaddr++,paddr))
return false;
Port::readBlob(paddr, &c, 1);
str += c;
} while (c);
return true;
}
void
TranslatingPort::readString(std::string &str, Addr addr)
{
if (!tryReadString(str, addr))
fatal("readString(0x%x, ...) failed", addr);
}