124 lines
3.2 KiB
C
124 lines
3.2 KiB
C
|
/*
|
||
|
* Copyright (c) 2003 The Regents of The University of Michigan
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are
|
||
|
* met: redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer;
|
||
|
* redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution;
|
||
|
* neither the name of the copyright holders nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived from
|
||
|
* this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef __INTMATH_H__
|
||
|
#define __INTMATH_H__
|
||
|
|
||
|
// Returns the prime number one less than n.
|
||
|
int PrevPrime(int n);
|
||
|
|
||
|
// Determine if a number is prime
|
||
|
inline bool
|
||
|
IsPrime(int n)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (n == 2 || n == 3)
|
||
|
return true;
|
||
|
|
||
|
// Don't try every odd number to prove if it is a prime.
|
||
|
// Toggle between every 2nd and 4th number.
|
||
|
// (This is because every 6th odd number is divisible by 3.)
|
||
|
for (i = 5; i*i <= n; i += 6) {
|
||
|
if (((n % i) == 0 ) || ((n % (i + 2)) == 0) ) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
inline unsigned
|
||
|
LeastSigBit(unsigned n)
|
||
|
{ return n & ~(n - 1); }
|
||
|
|
||
|
inline bool
|
||
|
IsPowerOf2(unsigned n)
|
||
|
{ return n != 0 && LeastSigBit(n) == n; }
|
||
|
|
||
|
inline int
|
||
|
FloorLog2(unsigned x)
|
||
|
{
|
||
|
if (x == 0)
|
||
|
return -1;
|
||
|
|
||
|
int y = 0;
|
||
|
|
||
|
if (x & 0xffff0000) { y += 16; x >>= 16; }
|
||
|
if (x & 0x0000ff00) { y += 8; x >>= 8; }
|
||
|
if (x & 0x000000f0) { y += 4; x >>= 4; }
|
||
|
if (x & 0x0000000c) { y += 2; x >>= 2; }
|
||
|
if (x & 0x00000002) { y += 1; }
|
||
|
|
||
|
return y;
|
||
|
}
|
||
|
|
||
|
inline int
|
||
|
CeilLog2(unsigned n)
|
||
|
{ return FloorLog2(n-1)+1; }
|
||
|
|
||
|
inline unsigned
|
||
|
FloorPow2(unsigned n)
|
||
|
{ return 1 << FloorLog2(n); }
|
||
|
|
||
|
inline unsigned
|
||
|
CeilPow2(unsigned n)
|
||
|
{ return 1 << CeilLog2(n); }
|
||
|
|
||
|
inline bool
|
||
|
IsHex(char c)
|
||
|
{ return (c >= '0' && c <= '9' ||
|
||
|
c >= 'A' && c <= 'F' ||
|
||
|
c >= 'a' && c <= 'f');
|
||
|
}
|
||
|
|
||
|
inline bool
|
||
|
IsOct(char c)
|
||
|
{ return (c >= '0' && c <= '7'); }
|
||
|
|
||
|
inline bool
|
||
|
IsDec(char c)
|
||
|
{ return (c >= '0' && c <= '9'); }
|
||
|
|
||
|
inline int
|
||
|
Hex2Int(char c)
|
||
|
{
|
||
|
if (c >= '0' && c <= '9')
|
||
|
return (c - '0');
|
||
|
|
||
|
if(c >= 'A' && c <= 'F')
|
||
|
return (c - 'A') + 10;
|
||
|
|
||
|
if (c >= 'a' && c <= 'f')
|
||
|
return (c - 'a') + 10;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif // __INTMATH_H__
|