gem5/cpu/checker/cpu.cc

858 lines
23 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//#include <cmath>
#include <cstdio>
//#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <list>
//#include <sstream>
#include <string>
//#include "base/cprintf.hh"
//#include "base/inifile.hh"
//#include "base/loader/symtab.hh"
#include "base/misc.hh"
//#include "base/pollevent.hh"
//#include "base/range.hh"
#include "base/refcnt.hh"
//#include "base/stats/events.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
//#include "cpu/exetrace.hh"
//#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
//#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
//#include "kern/kernel_stats.hh"
#include "mem/base_mem.hh"
#include "mem/mem_interface.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
//#include "sim/debug.hh"
//#include "sim/host.hh"
//#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "mem/functional/memory_control.hh"
#include "mem/functional/physical.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/functional/functional.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
void
CheckerCPU::init()
{
/*
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
*/
}
CheckerCPU::CheckerCPU(Params *p)
: BaseCPU(p), cpuXC(NULL), xcProxy(NULL)
{
memReq = new MemReq();
memReq->xc = xcProxy;
memReq->asid = 0;
memReq->data = new uint8_t[64];
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = changedNextPC = false;
exitOnError = p->exitOnError;
#if FULL_SYSTEM
itb = p->itb;
dtb = p->dtb;
systemPtr = NULL;
memPtr = NULL;
#endif
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setMemory(FunctionalMemory *mem)
{
memPtr = mem;
#if !FULL_SYSTEM
cpuXC = new CPUExecContext(this, /* thread_num */ 0, mem,
/* asid */ 0);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
#else
if (systemPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
}
#endif
}
#if FULL_SYSTEM
void
CheckerCPU::setSystem(System *system)
{
systemPtr = system;
if (memPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
}
}
#endif
void
CheckerCPU::serialize(ostream &os)
{
/*
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
cacheCompletionEvent.serialize(os);
*/
}
void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
*/
}
Fault
CheckerCPU::copySrcTranslate(Addr src)
{
static bool no_warn = true;
int blk_size = 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(memReq);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
}
Fault
CheckerCPU::copy(Addr dest)
{
static bool no_warn = true;
int blk_size = 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(memReq);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
}
else
assert(!fault->isAlignmentFault());
return fault;
}
// precise architected memory state accessor macros
template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
// Should I probe the DTB? Or should I just take the physical address
// and assume correct translation?
translateDataReadReq(memReq);
// if we have a cache, do cache access too
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
if (!(memReq->flags & UNCACHEABLE)) {
cpuXC->read(memReq, data);
} else {
// Assume the data is correct if it's an uncached access
memcpy(&data, &unverifiedResult.integer, sizeof(T));
}
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
cpuXC->translateDataWriteReq(memReq);
if ((!(unverifiedReq->flags & LOCKED) ||
((unverifiedReq->flags & LOCKED) &&
unverifiedReq->result == 1)) &&
!(unverifiedReq->flags & UNCACHEABLE)) {
// do functional access
// cpuXC->read(memReq, data);
memReq->cmd = Write;
// memcpy(memReq->data,(uint8_t *)&data,memReq->size);
T inst_data;
memcpy(&inst_data, unverifiedReq->data, sizeof(T));
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
// Hard to verify this as the data writes back after the
// instruction commits. May only be able to check that the
// value produced from execute() matches the value produced
// from the instruction's first execution.
if (data != inst_data) {
warn("Store value does not match value in memory! "
"Instruction: %#x, memory: %#x",
inst_data, data);
handleError();
}
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (res)
*res = unverifiedReq->result;
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
CheckerCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
bool
CheckerCPU::translateInstReq(MemReqPtr &req)
{
#if FULL_SYSTEM
return (cpuXC->translateInstReq(req) == NoFault);
#else
cpuXC->translateInstReq(req);
return true;
#endif
}
void
CheckerCPU::translateDataReadReq(MemReqPtr &req)
{
cpuXC->translateDataReadReq(req);
if (req->vaddr != unverifiedReq->vaddr) {
warn("Request virtual addresses do not match! Inst: %#x, checker:"
" %#x",
unverifiedReq->vaddr, req->vaddr);
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("Request flags do not match! Inst: %#x, checker: %#x",
unverifiedReq->flags, req->flags);
handleError();
}
}
void
CheckerCPU::translateDataWriteReq(MemReqPtr &req)
{
cpuXC->translateDataWriteReq(req);
if (req->vaddr != unverifiedReq->vaddr) {
warn("Request virtual addresses do not match! Inst: %#x, checker:"
" %#x",
unverifiedReq->vaddr, req->vaddr);
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("Request flags do not match! Inst: %#x, checker: %#x",
unverifiedReq->flags, req->flags);
handleError();
}
}
bool
CheckerCPU::checkFlags(MemReqPtr &req)
{
// Remove any dynamic flags that don't have to do with the request itself.
unsigned flags = unverifiedReq->flags;
unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
flags = flags & (mask);
if (flags == req->flags) {
return false;
} else {
return true;
}
}
/* start simulation, program loaded, processor precise state initialized */
template <class DynInstPtr>
void
Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
{
DynInstPtr inst;
if (!instList.empty()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
if (!instList.front()->isCompleted()) {
return;
} else {
inst = instList.front();
instList.pop_front();
}
} else {
if (!completed_inst->isCompleted()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
return;
} else {
if (youngestSN < completed_inst->seqNum) {
inst = completed_inst;
youngestSN = completed_inst->seqNum;
} else {
// panic("SN already seen yet the list is empty!");
return;
}
}
}
while (1) {
DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
inst->seqNum, inst->readPC());
// verifyInst = completed_inst;
unverifiedResult.integer = inst->readIntResult();
unverifiedReq = inst->req;
numCycles++;
Fault fault = NoFault;
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#ifdef TARGET_ALPHA
cpuXC->setFloatRegDouble(ZeroReg, 0.0);
#endif // TARGET_ALPHA
// Try to fetch an instruction
// set up memory request for instruction fetch
#if FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
if (changedPC) {
DPRINTF(Checker, "Changed PC recently to %#x\n",
cpuXC->readPC());
if (willChangePC) {
if (newPC == cpuXC->readPC()) {
DPRINTF(Checker, "Changed PC matches expected PC\n");
} else {
warn("Changed PC does not match expected PC, changed: %#x, "
"expected: %#x",
cpuXC->readPC(), newPC);
handleError();
}
willChangePC = false;
}
changedPC = false;
}
if (changedNextPC) {
DPRINTF(Checker, "Changed NextPC recently to %#x\n",
cpuXC->readNextPC());
changedNextPC = false;
}
memReq->cmd = Read;
memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t),
IFETCH_FLAGS(cpuXC->readPC()));
bool succeeded = translateInstReq(memReq);
if (!succeeded) {
warn("Instruction PC %#x was not found in the ITB!",
cpuXC->readPC());
handleError();
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
return;
}
// if (fault == NoFault)
// fault = cpuXC->mem->read(memReq, machInst);
cpuXC->mem->read(memReq, machInst);
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
// keep an instruction count
numInst++;
// numInsts++;
// decode the instruction
machInst = gtoh(machInst);
// Checks that the instruction matches what we expected it to be.
// Checks both the machine instruction and the PC.
validateInst(inst);
curStaticInst = StaticInst::decode(makeExtMI(machInst, cpuXC->readPC()));
#if FULL_SYSTEM
cpuXC->setInst(machInst);
#endif // FULL_SYSTEM
fault = inst->getFault();
// Either the instruction was a fault and we should process the fault,
// or we should just go ahead execute the instruction. This assumes
// that the instruction is properly marked as a fault.
if (fault == NoFault) {
cpuXC->func_exe_inst++;
fault = curStaticInst->execute(this, NULL);
// Checks to make sure instrution results are correct.
validateExecution(inst);
// if (curStaticInst->isMemRef()) {
// numMemRefs++;
// }
if (curStaticInst->isLoad()) {
++numLoad;
}
}
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC());
#endif // FULL_SYSTEM
} else {
#if THE_ISA != MIPS_ISA
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
int count = 0;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
count++;
} while (oldpc != cpuXC->readPC());
if (count > 1) {
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
}
#endif
// Checks PC, next PC. Optionally can check all registers. (Or just those
// that have been modified).
validateState();
if (instList.empty()) {
break;
} else if (instList.front()->isCompleted()) {
inst = instList.front();
instList.pop_front();
} else {
break;
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::switchOut(Sampler *s)
{
sampler = s;
instList.clear();
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
{
// BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
/*
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
}
*/
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
{
if (inst->readPC() != cpuXC->readPC()) {
warn("PCs do not match! Inst: %#x, checker: %#x",
inst->readPC(), cpuXC->readPC());
if (changedPC) {
warn("Changed PCs recently, may not be an error");
} else {
handleError();
}
}
if (static_cast<MachInst>(inst->staticInst->machInst) !=
machInst) {
warn("Binary instructions do not match! Inst: %#x, checker: %#x",
static_cast<MachInst>(inst->staticInst->machInst),
machInst);
handleError();
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
{
if (inst->numDestRegs()) {
if (inst->isUnverifiable()) {
// @todo: Support more destination registers.
// Grab the result from the instruction and write it to the
// register.
RegIndex idx = inst->destRegIdx(0);
if (idx < TheISA::FP_Base_DepTag) {
cpuXC->setIntReg(idx, inst->readIntResult());
} else if (idx < TheISA::Fpcr_DepTag) {
cpuXC->setFloatRegInt(idx, inst->readIntResult());
} else {
cpuXC->setMiscReg(idx, inst->readIntResult());
}
} else if (result.integer != inst->readIntResult()) {
warn("Instruction results do not match! (May not be integer results) "
"Inst: %#x, checker: %#x",
inst->readIntResult(), result.integer);
handleError();
}
}
if (inst->readNextPC() != cpuXC->readNextPC()) {
warn("Instruction next PCs do not match! Inst: %#x, checker: %#x",
inst->readNextPC(), cpuXC->readNextPC());
handleError();
}
// Checking side effect registers can be difficult if they are not
// checked simultaneously with the execution of the instruction.
// This is because other valid instructions may have modified
// these registers in the meantime, and their values are not
// stored within the DynInst.
while (!miscRegIdxs.empty()) {
int misc_reg_idx = miscRegIdxs.front();
miscRegIdxs.pop();
if (inst->xcBase()->readMiscReg(misc_reg_idx) !=
cpuXC->readMiscReg(misc_reg_idx)) {
warn("Misc reg idx %i (side effect) does not match! Inst: %#x, "
"checker: %#x",
misc_reg_idx, inst->xcBase()->readMiscReg(misc_reg_idx),
cpuXC->readMiscReg(misc_reg_idx));
handleError();
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateState()
{
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpInsts()
{
int num = 0;
InstListIt inst_list_it = --(instList.end());
cprintf("Inst list size: %i\n", instList.size());
while (inst_list_it != instList.end())
{
cprintf("Instruction:%i\n",
num);
cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Completed:%i\n",
(*inst_list_it)->readPC(),
(*inst_list_it)->seqNum,
(*inst_list_it)->threadNumber,
(*inst_list_it)->isCompleted());
cprintf("\n");
inst_list_it--;
++num;
}
}
template
class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;
template
class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;