gem5/src/mem/ruby/system/SparseMemory.cc

426 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/system/SparseMemory.hh"
// ****************************************************************
SparseMemory::SparseMemory(int number_of_bits, int number_of_levels)
{
int even_level_bits;
int extra;
m_total_number_of_bits = number_of_bits;
m_number_of_levels = number_of_levels;
//
// Create the array that describes the bits per level
//
m_number_of_bits_per_level = new int[m_number_of_levels];
even_level_bits = m_total_number_of_bits / m_number_of_levels;
extra = m_total_number_of_bits % m_number_of_levels;
for (int level = 0; level < m_number_of_levels; level++) {
if (level < extra)
m_number_of_bits_per_level[level] = even_level_bits + 1;
else
m_number_of_bits_per_level[level] = even_level_bits;
}
m_map_head = new SparseMapType;
m_total_adds = 0;
m_total_removes = 0;
m_adds_per_level = new uint64_t[m_number_of_levels];
m_removes_per_level = new uint64_t[m_number_of_levels];
for (int level = 0; level < m_number_of_levels; level++) {
m_adds_per_level[level] = 0;
m_removes_per_level[level] = 0;
}
}
SparseMemory::~SparseMemory()
{
recursivelyRemoveTables(m_map_head, 0);
delete m_map_head;
delete [] m_number_of_bits_per_level;
delete [] m_adds_per_level;
delete [] m_removes_per_level;
}
// Recursively search table hierarchy for the lowest level table.
// Delete the lowest table first, the tables above
void
SparseMemory::recursivelyRemoveTables(SparseMapType* curTable, int curLevel)
{
SparseMapType::iterator iter;
for (iter = curTable->begin(); iter != curTable->end(); iter++) {
SparseMemEntry_t* entryStruct = &((*iter).second);
if (curLevel != (m_number_of_levels - 1)) {
//
// If the not at the last level, analyze those lower level tables first,
// then delete those next tables
//
SparseMapType* nextTable;
nextTable = (SparseMapType*)(entryStruct->entry);
recursivelyRemoveTables(nextTable, (curLevel + 1));
delete nextTable;
} else {
//
// If at the last level, delete the directory entry
//
Directory_Entry* dirEntry;
dirEntry = (Directory_Entry*)(entryStruct->entry);
delete dirEntry;
}
entryStruct->entry = NULL;
}
//
// Once all entries have been deleted, erase the entries
//
curTable->erase(curTable->begin(), curTable->end());
}
// PUBLIC METHODS
// tests to see if an address is present in the memory
bool
SparseMemory::exist(const Address& address) const
{
SparseMapType* curTable = m_map_head;
Address curAddress;
//
// Initiallize the high bit to be the total number of bits plus the block
// offset. However the highest bit index is one less than this value.
//
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
assert(address == line_address(address));
DEBUG_EXPR(CACHE_COMP, HighPrio, address);
for (int level = 0; level < m_number_of_levels; level++) {
//
// Create the appropriate sub address for this level
// Note: that set Address is inclusive of the specified range, thus the
// high bit is one less than the total number of bits used to create the
// address.
//
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
DEBUG_EXPR(CACHE_COMP, HighPrio, level);
DEBUG_EXPR(CACHE_COMP, HighPrio, lowBit);
DEBUG_EXPR(CACHE_COMP, HighPrio, highBit - 1);
DEBUG_EXPR(CACHE_COMP, HighPrio, curAddress);
//
// Adjust the highBit value for the next level
//
highBit -= m_number_of_bits_per_level[level];
//
// If the address is found, move on to the next level. Otherwise,
// return not found
//
if (curTable->count(curAddress) != 0) {
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
} else {
DEBUG_MSG(CACHE_COMP, HighPrio, "Not found");
return false;
}
}
DEBUG_MSG(CACHE_COMP, HighPrio, "Entry found");
return true;
}
// add an address to memory
void
SparseMemory::add(const Address& address)
{
assert(address == line_address(address));
assert(!exist(address));
m_total_adds++;
Address curAddress;
SparseMapType* curTable = m_map_head;
SparseMemEntry_t* entryStruct = NULL;
//
// Initiallize the high bit to be the total number of bits plus the block
// offset. However the highest bit index is one less than this value.
//
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
void* newEntry = NULL;
for (int level = 0; level < m_number_of_levels; level++) {
//
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range, thus the
// high bit is one less than the total number of bits used to create the
// address.
//
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
//
// Adjust the highBit value for the next level
//
highBit -= m_number_of_bits_per_level[level];
//
// if the address exists in the cur table, move on. Otherwise
// create a new table.
//
if (curTable->count(curAddress) != 0) {
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
} else {
m_adds_per_level[level]++;
//
// if the last level, add a directory entry. Otherwise add a map.
//
if (level == (m_number_of_levels - 1)) {
Directory_Entry* tempDirEntry = new Directory_Entry();
tempDirEntry->getDataBlk().clear();
newEntry = (void*)tempDirEntry;
} else {
SparseMapType* tempMap = new SparseMapType;
newEntry = (void*)(tempMap);
}
//
// Create the pointer container SparseMemEntry_t and add it to the
// table.
//
entryStruct = new SparseMemEntry_t;
entryStruct->entry = newEntry;
(*curTable)[curAddress] = *entryStruct;
//
// Move to the next level of the heirarchy
//
curTable = (SparseMapType*)newEntry;
}
}
assert(exist(address));
return;
}
// recursively search table hierarchy for the lowest level table.
// remove the lowest entry and any empty tables above it.
int
SparseMemory::recursivelyRemoveLevels(
const Address& address,
curNextInfo& curInfo)
{
Address curAddress;
curNextInfo nextInfo;
SparseMemEntry_t* entryStruct;
//
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range, thus the
// high bit is one less than the total number of bits used to create the
// address.
//
curAddress.setAddress(address.bitSelect(curInfo.lowBit,
curInfo.highBit - 1));
DEBUG_EXPR(CACHE_COMP, HighPrio, address);
DEBUG_EXPR(CACHE_COMP, HighPrio, curInfo.level);
DEBUG_EXPR(CACHE_COMP, HighPrio, curInfo.lowBit);
DEBUG_EXPR(CACHE_COMP, HighPrio, curInfo.highBit - 1);
DEBUG_EXPR(CACHE_COMP, HighPrio, curAddress);
assert(curInfo.curTable->count(curAddress) != 0);
entryStruct = &((*(curInfo.curTable))[curAddress]);
if (curInfo.level < (m_number_of_levels - 1)) {
//
// set up next level's info
//
nextInfo.curTable = (SparseMapType*)(entryStruct->entry);
nextInfo.level = curInfo.level + 1;
nextInfo.highBit = curInfo.highBit -
m_number_of_bits_per_level[curInfo.level];
nextInfo.lowBit = curInfo.lowBit -
m_number_of_bits_per_level[curInfo.level + 1];
//
// recursively search the table hierarchy
//
int tableSize = recursivelyRemoveLevels(address, nextInfo);
//
// If this table below is now empty, we must delete it and erase it from
// our table.
//
if (tableSize == 0) {
m_removes_per_level[curInfo.level]++;
delete nextInfo.curTable;
entryStruct->entry = NULL;
curInfo.curTable->erase(curAddress);
}
} else {
//
// if this is the last level, we have reached the Directory Entry and thus
// we should delete it including the SparseMemEntry container struct.
//
Directory_Entry* dirEntry;
dirEntry = (Directory_Entry*)(entryStruct->entry);
entryStruct->entry = NULL;
delete dirEntry;
curInfo.curTable->erase(curAddress);
m_removes_per_level[curInfo.level]++;
}
return curInfo.curTable->size();
}
// remove an entry from the table
void
SparseMemory::remove(const Address& address)
{
assert(address == line_address(address));
assert(exist(address));
m_total_removes++;
curNextInfo nextInfo;
//
// Initialize table pointer and level value
//
nextInfo.curTable = m_map_head;
nextInfo.level = 0;
//
// Initiallize the high bit to be the total number of bits plus the block
// offset. However the highest bit index is one less than this value.
//
nextInfo.highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
nextInfo.lowBit = nextInfo.highBit - m_number_of_bits_per_level[0];;
//
// recursively search the table hierarchy for empty tables starting from the
// level 0. Note we do not check the return value because the head table is
// never deleted;
//
recursivelyRemoveLevels(address, nextInfo);
assert(!exist(address));
return;
}
// looks an address up in memory
Directory_Entry*
SparseMemory::lookup(const Address& address)
{
assert(exist(address));
assert(address == line_address(address));
DEBUG_EXPR(CACHE_COMP, HighPrio, address);
Address curAddress;
SparseMapType* curTable = m_map_head;
Directory_Entry* entry = NULL;
//
// Initiallize the high bit to be the total number of bits plus the block
// offset. However the highest bit index is one less than this value.
//
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
for (int level = 0; level < m_number_of_levels; level++) {
//
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range, thus the
// high bit is one less than the total number of bits used to create the
// address.
//
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
DEBUG_EXPR(CACHE_COMP, HighPrio, level);
DEBUG_EXPR(CACHE_COMP, HighPrio, lowBit);
DEBUG_EXPR(CACHE_COMP, HighPrio, highBit - 1);
DEBUG_EXPR(CACHE_COMP, HighPrio, curAddress);
//
// Adjust the highBit value for the next level
//
highBit -= m_number_of_bits_per_level[level];
//
// The entry should be in the table and valid
//
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
assert(curTable != NULL);
}
//
// The last entry actually points to the Directory entry not a table
//
entry = (Directory_Entry*)curTable;
return entry;
}
void
SparseMemory::print(ostream& out) const
{
}
void
SparseMemory::printStats(ostream& out) const
{
out << "total_adds: " << m_total_adds << " [";
for (int level = 0; level < m_number_of_levels; level++) {
out << m_adds_per_level[level] << " ";
}
out << "]" << endl;
out << "total_removes: " << m_total_removes << " [";
for (int level = 0; level < m_number_of_levels; level++) {
out << m_removes_per_level[level] << " ";
}
out << "]" << endl;
}