gem5/cpu/o3/thread_state.hh

144 lines
4 KiB
C++
Raw Normal View History

#ifndef __CPU_O3_THREAD_STATE_HH__
#define __CPU_O3_THREAD_STATE_HH__
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "cpu/exec_context.hh"
#include "cpu/thread_state.hh"
class Event;
class Process;
#if FULL_SYSTEM
class EndQuiesceEvent;
class FunctionProfile;
class ProfileNode;
#else
class Process;
class FunctionalMemory;
#endif
// In the new CPU case this may be quite small...It depends on what I define
// ThreadState to be. Currently it's only the state that exists within
// ExecContext basically. Leaves the interface and manipulation up to the
// CPU. Not sure this is useful/flexible...probably can be if I can avoid
// including state here that parts of the pipeline can't modify directly,
// or at least don't let them. The only problem is for state that's needed
// per thread, per structure. I.e. rename table, memreqs.
// On the other hand, it might be nice to not have to pay the extra pointer
// lookup to get frequently used state such as a memreq (that isn't used much
// elsewhere)...
// Maybe this ozone thread state should only really have committed state?
// I need to think about why I'm using this and what it's useful for. Clearly
// has benefits for SMT; basically serves same use as CPUExecContext.
// Makes the ExecContext proxy easier. Gives organization/central access point
// to state of a thread that can be accessed normally (i.e. not in-flight
// stuff within a OoO processor). Does this need an XC proxy within it?
template <class Impl>
struct O3ThreadState : public ThreadState {
typedef ExecContext::Status Status;
typedef typename Impl::FullCPU FullCPU;
Status _status;
// Current instruction?
TheISA::MachInst inst;
private:
FullCPU *cpu;
public:
bool inSyscall;
bool trapPending;
#if FULL_SYSTEM
O3ThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem)
: ThreadState(-1, _thread_num, _mem),
inSyscall(0), trapPending(0)
{ }
#else
O3ThreadState(FullCPU *_cpu, int _thread_num, Process *_process, int _asid)
: ThreadState(-1, _thread_num, _process->getMemory(), _process, _asid),
cpu(_cpu), inSyscall(0), trapPending(0)
{ }
O3ThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
int _asid)
: ThreadState(-1, _thread_num, _mem, NULL, _asid),
cpu(_cpu), inSyscall(0), trapPending(0)
{ }
#endif
ExecContext *xcProxy;
ExecContext *getXCProxy() { return xcProxy; }
Status status() const { return _status; }
void setStatus(Status new_status) { _status = new_status; }
#if !FULL_SYSTEM
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return NoFault;
}
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
bool validInstAddr(Addr addr)
{ return process->validInstAddr(addr); }
bool validDataAddr(Addr addr)
{ return process->validDataAddr(addr); }
#else
Fault translateInstReq(MemReqPtr &req)
{
return cpu->itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return cpu->dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return cpu->dtb->translate(req, true);
}
#endif
bool misspeculating() { return false; }
void setInst(TheISA::MachInst _inst) { inst = _inst; }
Counter readFuncExeInst() { return funcExeInst; }
void setFuncExeInst(Counter new_val) { funcExeInst = new_val; }
#if !FULL_SYSTEM
void syscall() { process->syscall(xcProxy); }
#endif
};
#endif // __CPU_O3_THREAD_STATE_HH__