gem5/src/dev/arm/hdlcd.cc

858 lines
29 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2010-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Chris Emmons
*/
#include "base/vnc/vncinput.hh"
#include "base/bitmap.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "debug/HDLcd.hh"
#include "debug/Uart.hh"
#include "dev/arm/amba_device.hh"
#include "dev/arm/base_gic.hh"
#include "dev/arm/hdlcd.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "sim/system.hh"
using std::vector;
// initialize hdlcd registers
HDLcd::HDLcd(const Params *p)
: AmbaDmaDevice(p), version(VERSION_RESETV),
int_rawstat(0), int_clear(0), int_mask(0), int_status(0),
fb_base(0), fb_line_length(0), fb_line_count(0), fb_line_pitch(0),
bus_options(BUS_OPTIONS_RESETV),
v_sync(0), v_back_porch(0), v_data(0), v_front_porch(0),
h_sync(0), h_back_porch(0), h_data(0), h_front_porch(0),
polarities(0), command(0), pixel_format(0),
red_select(0), green_select(0), blue_select(0),
pixelClock(p->pixel_clock), vnc(p->vnc), bmp(NULL), pic(NULL),
frameReadStartTime(0),
dmaStartAddr(0), dmaCurAddr(0), dmaMaxAddr(0), dmaPendingNum(0),
frameUnderrun(false), virtualDisplayBuffer(NULL), pixelBufferSize(0),
pixelIndex(0), doUpdateParams(false), frameUnderway(false),
dmaBytesInFlight(0),
startFrameEvent(this), endFrameEvent(this), renderPixelEvent(this),
fillPixelBufferEvent(this), intEvent(this),
dmaDoneEventAll(MAX_OUTSTANDING_DMA_REQ_CAPACITY, this),
dmaDoneEventFree(MAX_OUTSTANDING_DMA_REQ_CAPACITY),
enableCapture(p->enable_capture)
{
pioSize = 0xFFFF;
for (int i = 0; i < MAX_OUTSTANDING_DMA_REQ_CAPACITY; ++i)
dmaDoneEventFree[i] = &dmaDoneEventAll[i];
if (vnc)
vnc->setFramebufferAddr(NULL);
}
HDLcd::~HDLcd()
{
if (virtualDisplayBuffer)
delete [] virtualDisplayBuffer;
}
// read registers and frame buffer
Tick
HDLcd::read(PacketPtr pkt)
{
uint32_t data = 0;
const Addr daddr = pkt->getAddr() - pioAddr;
DPRINTF(HDLcd, "read register BASE+0x%04x size=%d\n", daddr,
pkt->getSize());
assert(pkt->getAddr() >= pioAddr &&
pkt->getAddr() < pioAddr + pioSize &&
pkt->getSize() == 4);
switch (daddr) {
case Version:
data = version;
break;
case Int_RawStat:
data = int_rawstat;
break;
case Int_Clear:
panic("HDLCD INT_CLEAR register is Write-Only\n");
break;
case Int_Mask:
data = int_mask;
break;
case Int_Status:
data = int_status;
break;
case Fb_Base:
data = fb_base;
break;
case Fb_Line_Length:
data = fb_line_length;
break;
case Fb_Line_Count:
data = fb_line_count;
break;
case Fb_Line_Pitch:
data = fb_line_pitch;
break;
case Bus_Options:
data = bus_options;
break;
case V_Sync:
data = v_sync;
break;
case V_Back_Porch:
data = v_back_porch;
break;
case V_Data:
data = v_data;
break;
case V_Front_Porch:
data = v_front_porch;
break;
case H_Sync:
data = h_sync;
break;
case H_Back_Porch:
data = h_back_porch;
break;
case H_Data:
data = h_data;
break;
case H_Front_Porch:
data = h_front_porch;
break;
case Polarities:
data = polarities;
break;
case Command:
data = command;
break;
case Pixel_Format:
data = pixel_format;
break;
case Red_Select:
data = red_select;
break;
case Green_Select:
data = green_select;
break;
case Blue_Select:
data = blue_select;
break;
default:
panic("Tried to read HDLCD register that doesn't exist\n", daddr);
break;
}
pkt->set<uint32_t>(data);
pkt->makeAtomicResponse();
return pioDelay;
}
// write registers and frame buffer
Tick
HDLcd::write(PacketPtr pkt)
{
assert(pkt->getAddr() >= pioAddr &&
pkt->getAddr() < pioAddr + pioSize &&
pkt->getSize() == 4);
const uint32_t data = pkt->get<uint32_t>();
const Addr daddr = pkt->getAddr() - pioAddr;
DPRINTF(HDLcd, "write register BASE+%0x04x <= 0x%08x\n", daddr,
pkt->get<uint32_t>());
switch (daddr) {
case Version:
panic("HDLCD VERSION register is read-Only\n");
break;
case Int_RawStat:
int_rawstat = data;
break;
case Int_Clear:
int_clear = data;
break;
case Int_Mask:
int_mask = data;
break;
case Int_Status:
panic("HDLCD INT_STATUS register is read-Only\n");
break;
case Fb_Base:
fb_base = data;
DPRINTF(HDLcd, "HDLCD Frame Buffer located at addr 0x%08x\n", fb_base);
break;
case Fb_Line_Length:
fb_line_length = data;
DPRINTF(HDLcd, "HDLCD res = %d x %d\n", width(), height());
break;
case Fb_Line_Count:
fb_line_count = data;
DPRINTF(HDLcd, "HDLCD res = %d x %d\n", width(), height());
break;
case Fb_Line_Pitch:
fb_line_pitch = data;
break;
case Bus_Options: {
BusOptsReg old_bus_options;
old_bus_options = bus_options;
bus_options = data;
if (bus_options.max_outstanding != old_bus_options.max_outstanding)
DPRINTF(HDLcd,
"Changing HDLcd outstanding dma transactions from %d to %d\n",
old_bus_options.max_outstanding, bus_options.max_outstanding);
if (bus_options.burst_len != old_bus_options.burst_len)
DPRINTF(HDLcd,
"Changing HDLcd dma burst length from %d bytes to %d bytes\n",
old_bus_options.burst_len, bus_options.burst_len); }
break;
case V_Sync:
v_sync = data;
break;
case V_Back_Porch:
v_back_porch = data;
break;
case V_Data:
v_data = data;
break;
case V_Front_Porch:
v_front_porch = data;
break;
case H_Sync:
h_sync = data;
break;
case H_Back_Porch:
h_back_porch = data;
break;
case H_Data:
h_data = data;
break;
case H_Front_Porch:
h_front_porch = data;
break;
case Polarities:
polarities = data;
break;
case Command: {
CommandReg new_command;
new_command = data;
if (new_command.enable != command.enable) {
DPRINTF(HDLcd, "HDLCD switched %s\n",
new_command.enable==0 ? "off" : "on");
if (new_command.enable) {
doUpdateParams = true;
if (!frameUnderway) {
schedule(startFrameEvent, clockEdge());
}
}
}
command = new_command; }
break;
case Pixel_Format:
pixel_format = data;
DPRINTF(HDLcd, "HDLCD res = %d x %d\n", width(), height());
DPRINTF(HDLcd, "HDLCD bytes per pixel = %d\n", bytesPerPixel());
DPRINTF(HDLcd, "HDLCD endianness = %s\n",
pixel_format.big_endian ? "big" : "little");
break;
case Red_Select:
red_select = data;
break;
case Green_Select:
green_select = data;
break;
case Blue_Select:
blue_select = data;
break;
default:
panic("Tried to write HDLCD register that doesn't exist\n", daddr);
break;
}
pkt->makeAtomicResponse();
return pioDelay;
}
void
HDLcd::updateVideoParams(bool unserializing = false)
{
const uint16_t bpp = bytesPerPixel() << 3;
const size_t buffer_size = bytesPerPixel() * width() * height();
// updating these parameters while LCD is enabled is not supported
if (frameUnderway && !unserializing)
panic("Attempting to change some HDLCD parameters while the controller"
" is active is not allowed");
// resize the virtualDisplayBuffer unless we are unserializing - it may
// have changed size
// there must be no outstanding DMA transactions for this to work
if (!unserializing) {
assert(dmaPendingNum == 0);
if (virtualDisplayBuffer)
delete [] virtualDisplayBuffer;
virtualDisplayBuffer = new uint8_t[buffer_size];
memset(virtualDisplayBuffer, 0, buffer_size);
}
assert(virtualDisplayBuffer);
if (vnc)
vnc->setFramebufferAddr(virtualDisplayBuffer);
if (bmp)
delete bmp;
DPRINTF(HDLcd, "bpp = %d\n", bpp);
DPRINTF(HDLcd, "display size = %d x %d\n", width(), height());
#if TRACING_ON
const size_t totalLinesPerFrame = v_back_porch.val + 1 +
v_data.val + 1 +
v_front_porch.val + 1 +
v_sync.val + 1;
const double fps = (double)SimClock::Frequency /
(double)(PClksPerLine() * totalLinesPerFrame * pixelClock);
#endif
DPRINTF(HDLcd, "simulated refresh rate ~ %.1ffps generating ~ %.1fMB/s "
"traffic ([%.1fMHz, T=%d sim clocks] pclk, %d bpp => %.1fMB/s peak requirement)\n",
fps,
fps * buffer_size / 1024 / 1024,
(double)SimClock::Frequency / pixelClock / 1000000.0,
pixelClock,
bpp,
(double)(SimClock::Frequency / pixelClock * (bpp / 8)) / 1024 / 1024);
if (pixel_format.big_endian)
panic("Big Endian pixel format not implemented by HDLcd controller");
if (vnc) {
if ((bpp == 24) &&
(red_select.size == 8) &&
(blue_select.size == 8) &&
(green_select.size == 8) &&
(green_select.offset == 8)) {
if ((blue_select.offset == 0) &&
(red_select.offset == 16)) {
vnc->setFrameBufferParams(VideoConvert::rgb8888, width(),
height());
bmp = new Bitmap(VideoConvert::rgb8888, width(), height(),
virtualDisplayBuffer);
DPRINTF(HDLcd, "color mode: rgb888\n");
} else if ((red_select.offset == 0) &&
(blue_select.offset == 16)) {
vnc->setFrameBufferParams(VideoConvert::bgr8888, width(),
height());
bmp = new Bitmap(VideoConvert::bgr8888, width(), height(),
virtualDisplayBuffer);
DPRINTF(HDLcd, "color mode: bgr888\n");
}
} else if ((bpp == 16) &&
(red_select.size == 5) &&
(blue_select.size == 5) &&
(green_select.size == 6) &&
(green_select.offset == 5)) {
if ((blue_select.offset == 0) &&
(red_select.offset == 11)) {
vnc->setFrameBufferParams(VideoConvert::rgb565, width(),
height());
bmp = new Bitmap(VideoConvert::rgb565, width(), height(),
virtualDisplayBuffer);
DPRINTF(HDLcd, "color mode: rgb565\n");
} else if ((red_select.offset == 0) &&
(blue_select.offset == 11)) {
vnc->setFrameBufferParams(VideoConvert::bgr565, width(),
height());
bmp = new Bitmap(VideoConvert::bgr565, width(), height(),
virtualDisplayBuffer);
DPRINTF(HDLcd, "color mode: bgr565\n");
}
} else {
DPRINTF(HDLcd, "color mode: undefined\n");
panic("Unimplemented video mode\n");
}
}
}
void
HDLcd::startFrame()
{
// 0. Check that we are in the appropriate state
assert(!frameUnderway);
if (!command.enable)
return;
DPRINTF(HDLcd, "Frame read started\n");
if (doUpdateParams) {
updateVideoParams();
doUpdateParams = false;
}
frameUnderway = true;
assert(virtualDisplayBuffer);
assert(pixelBufferSize == 0);
assert(dmaBytesInFlight == 0);
assert(dmaPendingNum == 0);
assert(dmaDoneEventFree.size() == dmaDoneEventAll.size());
assert(!renderPixelEvent.scheduled());
// currently only support positive line pitches equal to the line length
assert(width() * bytesPerPixel() == fb_line_pitch);
// 1. Start DMA'ing the frame; subsequent transactions created as we go
dmaCurAddr = dmaStartAddr = fb_base;
dmaMaxAddr = static_cast<Addr>(width() * height() * bytesPerPixel()) +
dmaCurAddr;
frameReadStartTime = curTick();
pixelIndex = 0;
frameUnderrun = false;
fillPixelBuffer();
// 2. Schedule first pixelclock read; subsequent reads generated as we go
Tick firstPixelReadTick = curTick() + pixelClock * (
PClksPerLine() * (v_sync.val + 1 +
v_back_porch.val + 1) +
h_sync.val + 1 +
h_back_porch.val + 1);
schedule(renderPixelEvent, firstPixelReadTick);
}
void
HDLcd::fillPixelBuffer()
{
// - am I under the LCD dma transaction total?
// - do I have more data to transfer?
// - have I not yet underrun for this frame?
// - is there room to put the data in the pixel buffer including any
// outstanding dma transfers in flight?
while ((dmaPendingNum < maxOutstandingDma()) &&
(dmaMaxAddr > dmaCurAddr) &&
!frameUnderrun &&
bytesFreeInPixelBuffer() > dmaBurstLength() * AXI_PORT_WIDTH) {
// try largest transaction size allowed first but switch to smaller
// sizes for trailing bytes
size_t transaction_size = dmaBurstLength() * AXI_PORT_WIDTH;
while (transaction_size > (dmaMaxAddr - dmaCurAddr))
transaction_size >>= 1;
assert(transaction_size > 0);
// concurrent dma reads need different dma done events
// due to assertion in scheduling state
++dmaPendingNum;
assert(!dmaDoneEventFree.empty());
DmaDoneEvent *event(dmaDoneEventFree.back());
dmaDoneEventFree.pop_back();
assert(event);
assert(!event->scheduled());
// We use a uncachable request here because the requests from the CPU
// will be uncacheable as well. If we have uncacheable and cacheable
// requests in the memory system for the same address it won't be
// pleased
event->setTransactionSize(transaction_size);
dmaPort.dmaAction(MemCmd::ReadReq, dmaCurAddr, transaction_size, event,
virtualDisplayBuffer + dmaCurAddr - dmaStartAddr,
0, Request::UNCACHEABLE);
dmaCurAddr += transaction_size;
dmaBytesInFlight += transaction_size;
}
}
void
HDLcd::renderPixel()
{
// try to handle multiple pixels at a time; doing so reduces the accuracy
// of the underrun detection but lowers simulation overhead
const size_t count = 32;
assert(width() % count == 0); // not set up to handle trailing pixels
// have we underrun on this frame anytime before?
if (frameUnderrun) {
// the LCD controller gives up on a frame if an underrun occurs and
// resumes regular operation on the next frame
pixelBufferSize = 0;
} else {
// did we underrun on this set of pixels?
if (pixelBufferSize < bytesPerPixel() * count) {
warn("HDLcd controller buffer underrun\n");
frameUnderrun = true;
int_rawstat.underrun = 1;
if (!intEvent.scheduled())
schedule(intEvent, clockEdge());
} else {
// emulate the pixel read from the internal buffer
pixelBufferSize -= bytesPerPixel() * count;
}
}
// the DMA may have previously stalled due to the buffer being full;
// give it a kick; it knows not to fill if at end of frame, underrun, etc
if (!fillPixelBufferEvent.scheduled())
schedule(fillPixelBufferEvent, clockEdge());
// schedule the next pixel read according to where it is in the frame
pixelIndex += count;
assert(pixelIndex <= width() * height());
size_t x = pixelIndex % width();
Tick nextEventTick = curTick();
if (x == 0) {
// start of new line
nextEventTick += pixelClock * ((h_front_porch.val + 1) +
(h_back_porch.val + 1) +
(h_sync.val + 1));
if (pixelIndex == width() * height()) {
// end of frame
nextEventTick += PClksPerLine() * (v_front_porch.val + 1) *
pixelClock;
schedule(endFrameEvent, nextEventTick);
return;
}
} else {
nextEventTick += pixelClock * count;
}
schedule(renderPixelEvent, nextEventTick);
}
void
HDLcd::endFrame() {
assert(pixelBufferSize == 0);
assert(dmaPendingNum == 0);
assert(dmaBytesInFlight == 0);
assert(dmaDoneEventFree.size() == dmaDoneEventAll.size());
if (vnc)
vnc->setDirty();
if (enableCapture) {
if (!pic)
pic = simout.create(csprintf("%s.framebuffer.bmp", sys->name()), true);
assert(bmp);
assert(pic);
pic->seekp(0);
bmp->write(pic);
}
// start the next frame
frameUnderway = false;
startFrame();
}
void
HDLcd::dmaDone(DmaDoneEvent *event)
{
const size_t transactionLength = event->getTransactionSize();
assert(pixelBufferSize + transactionLength < PIXEL_BUFFER_CAPACITY);
assert(dmaCurAddr <= dmaMaxAddr);
dmaDoneEventFree.push_back(event);
--dmaPendingNum;
assert(MAX_OUTSTANDING_DMA_REQ_CAPACITY - dmaDoneEventFree.size() ==
dmaPendingNum);
// add the data to the pixel buffer
dmaBytesInFlight -= transactionLength;
pixelBufferSize += transactionLength;
// schedule another dma transaction if:
// - we're not done reading the frame
// - there is sufficient room in the pixel buffer for another transaction
// - another fillPixelBufferEvent is not already scheduled
const size_t targetTransSize = dmaBurstLength() * AXI_PORT_WIDTH;
if ((dmaCurAddr < dmaMaxAddr) &&
(bytesFreeInPixelBuffer() + targetTransSize < PIXEL_BUFFER_CAPACITY) &&
!fillPixelBufferEvent.scheduled()) {
schedule(fillPixelBufferEvent, clockEdge());
}
}
void
HDLcd::serialize(std::ostream &os)
{
DPRINTF(HDLcd, "Serializing ARM HDLCD\n");
const uint32_t version_serial = version;
SERIALIZE_SCALAR(version_serial);
const uint32_t int_rawstat_serial = int_rawstat;
SERIALIZE_SCALAR(int_rawstat_serial);
const uint32_t int_clear_serial = int_clear;
SERIALIZE_SCALAR(int_clear_serial);
const uint32_t int_mask_serial = int_mask;
SERIALIZE_SCALAR(int_mask_serial);
const uint32_t int_status_serial = int_status;
SERIALIZE_SCALAR(int_status_serial);
SERIALIZE_SCALAR(fb_base);
SERIALIZE_SCALAR(fb_line_length);
const uint32_t fb_line_count_serial = fb_line_count;
SERIALIZE_SCALAR(fb_line_count_serial);
SERIALIZE_SCALAR(fb_line_pitch);
const uint32_t bus_options_serial = bus_options;
SERIALIZE_SCALAR(bus_options_serial);
const uint32_t v_sync_serial = v_sync;
SERIALIZE_SCALAR(v_sync_serial);
const uint32_t v_back_porch_serial = v_back_porch;
SERIALIZE_SCALAR(v_back_porch_serial);
const uint32_t v_data_serial = v_data;
SERIALIZE_SCALAR(v_data_serial);
const uint32_t v_front_porch_serial = v_front_porch;
SERIALIZE_SCALAR(v_front_porch_serial);
const uint32_t h_sync_serial = h_sync;
SERIALIZE_SCALAR(h_sync_serial);
const uint32_t h_back_porch_serial = h_back_porch;
SERIALIZE_SCALAR(h_back_porch_serial);
const uint32_t h_data_serial = h_data;
SERIALIZE_SCALAR(h_data_serial);
const uint32_t h_front_porch_serial = h_front_porch;
SERIALIZE_SCALAR(h_front_porch_serial);
const uint32_t polarities_serial = polarities;
SERIALIZE_SCALAR(polarities_serial);
const uint32_t command_serial = command;
SERIALIZE_SCALAR(command_serial);
const uint32_t pixel_format_serial = pixel_format;
SERIALIZE_SCALAR(pixel_format_serial);
const uint32_t red_select_serial = red_select;
SERIALIZE_SCALAR(red_select_serial);
const uint32_t green_select_serial = green_select;
SERIALIZE_SCALAR(green_select_serial);
const uint32_t blue_select_serial = blue_select;
SERIALIZE_SCALAR(blue_select_serial);
SERIALIZE_SCALAR(frameReadStartTime);
SERIALIZE_SCALAR(dmaStartAddr);
SERIALIZE_SCALAR(dmaCurAddr);
SERIALIZE_SCALAR(dmaMaxAddr);
SERIALIZE_SCALAR(dmaPendingNum);
SERIALIZE_SCALAR(frameUnderrun);
const size_t buffer_size = bytesPerPixel() * width() * height();
SERIALIZE_ARRAY(virtualDisplayBuffer, buffer_size);
SERIALIZE_SCALAR(pixelBufferSize);
SERIALIZE_SCALAR(pixelIndex);
SERIALIZE_SCALAR(doUpdateParams);
SERIALIZE_SCALAR(frameUnderway);
SERIALIZE_SCALAR(dmaBytesInFlight);
Tick start_event_time = 0;
Tick end_event_time = 0;
Tick render_pixel_event_time = 0;
Tick fill_pixel_buffer_event_time = 0;
Tick int_event_time = 0;
if (startFrameEvent.scheduled())
start_event_time = startFrameEvent.when();
if (endFrameEvent.scheduled())
end_event_time = endFrameEvent.when();
if (renderPixelEvent.scheduled())
render_pixel_event_time = renderPixelEvent.when();
if (fillPixelBufferEvent.scheduled())
fill_pixel_buffer_event_time = fillPixelBufferEvent.when();
if (intEvent.scheduled())
int_event_time = intEvent.when();
SERIALIZE_SCALAR(start_event_time);
SERIALIZE_SCALAR(end_event_time);
SERIALIZE_SCALAR(render_pixel_event_time);
SERIALIZE_SCALAR(fill_pixel_buffer_event_time);
SERIALIZE_SCALAR(int_event_time);
vector<Tick> dma_done_event_tick(MAX_OUTSTANDING_DMA_REQ_CAPACITY);
vector<size_t> dma_done_event_burst_len(MAX_OUTSTANDING_DMA_REQ_CAPACITY);
for (int x = 0; x < MAX_OUTSTANDING_DMA_REQ_CAPACITY; ++x) {
dma_done_event_tick[x] = dmaDoneEventAll[x].scheduled() ?
dmaDoneEventAll[x].when() : 0;
dma_done_event_burst_len[x] = dmaDoneEventAll[x].scheduled() ?
dmaDoneEventAll[x].getTransactionSize() : 0;
}
arrayParamOut(os, "dma_done_event_tick", dma_done_event_tick);
arrayParamOut(os, "dma_done_event_burst_length", dma_done_event_burst_len);
}
void
HDLcd::unserialize(Checkpoint *cp, const std::string &section)
{
uint32_t version_serial, int_rawstat_serial, int_clear_serial,
int_mask_serial, int_status_serial, fb_line_count_serial,
bus_options_serial, v_sync_serial, v_back_porch_serial,
v_data_serial, v_front_porch_serial, h_sync_serial,
h_back_porch_serial, h_data_serial, h_front_porch_serial,
polarities_serial, command_serial, pixel_format_serial,
red_select_serial, green_select_serial, blue_select_serial;
DPRINTF(HDLcd, "Unserializing ARM HDLCD\n");
UNSERIALIZE_SCALAR(version_serial);
version = version_serial;
UNSERIALIZE_SCALAR(int_rawstat_serial);
int_rawstat = int_rawstat_serial;
UNSERIALIZE_SCALAR(int_clear_serial);
int_clear = int_clear_serial;
UNSERIALIZE_SCALAR(int_mask_serial);
int_mask = int_mask_serial;
UNSERIALIZE_SCALAR(int_status_serial);
int_status = int_status_serial;
UNSERIALIZE_SCALAR(fb_base);
UNSERIALIZE_SCALAR(fb_line_length);
UNSERIALIZE_SCALAR(fb_line_count_serial);
fb_line_count = fb_line_count_serial;
UNSERIALIZE_SCALAR(fb_line_pitch);
UNSERIALIZE_SCALAR(bus_options_serial);
bus_options = bus_options_serial;
UNSERIALIZE_SCALAR(v_sync_serial);
v_sync = v_sync_serial;
UNSERIALIZE_SCALAR(v_back_porch_serial);
v_back_porch = v_back_porch_serial;
UNSERIALIZE_SCALAR(v_data_serial);
v_data = v_data_serial;
UNSERIALIZE_SCALAR(v_front_porch_serial);
v_front_porch = v_front_porch_serial;
UNSERIALIZE_SCALAR(h_sync_serial);
h_sync = h_sync_serial;
UNSERIALIZE_SCALAR(h_back_porch_serial);
h_back_porch = h_back_porch_serial;
UNSERIALIZE_SCALAR(h_data_serial);
h_data = h_data_serial;
UNSERIALIZE_SCALAR(h_front_porch_serial);
h_front_porch = h_front_porch_serial;
UNSERIALIZE_SCALAR(polarities_serial);
polarities = polarities_serial;
UNSERIALIZE_SCALAR(command_serial);
command = command_serial;
UNSERIALIZE_SCALAR(pixel_format_serial);
pixel_format = pixel_format_serial;
UNSERIALIZE_SCALAR(red_select_serial);
red_select = red_select_serial;
UNSERIALIZE_SCALAR(green_select_serial);
green_select = green_select_serial;
UNSERIALIZE_SCALAR(blue_select_serial);
blue_select = blue_select_serial;
UNSERIALIZE_SCALAR(frameReadStartTime);
UNSERIALIZE_SCALAR(dmaStartAddr);
UNSERIALIZE_SCALAR(dmaCurAddr);
UNSERIALIZE_SCALAR(dmaMaxAddr);
UNSERIALIZE_SCALAR(dmaPendingNum);
UNSERIALIZE_SCALAR(frameUnderrun);
UNSERIALIZE_SCALAR(dmaBytesInFlight);
const size_t buffer_size = bytesPerPixel() * width() * height();
virtualDisplayBuffer = new uint8_t[buffer_size];
UNSERIALIZE_ARRAY(virtualDisplayBuffer, buffer_size);
UNSERIALIZE_SCALAR(pixelBufferSize);
UNSERIALIZE_SCALAR(pixelIndex);
UNSERIALIZE_SCALAR(doUpdateParams);
UNSERIALIZE_SCALAR(frameUnderway);
Tick start_event_time = 0;
Tick end_event_time = 0;
Tick render_pixel_event_time = 0;
Tick fill_pixel_buffer_event_time = 0;
Tick int_event_time = 0;
UNSERIALIZE_SCALAR(start_event_time);
UNSERIALIZE_SCALAR(end_event_time);
UNSERIALIZE_SCALAR(render_pixel_event_time);
UNSERIALIZE_SCALAR(fill_pixel_buffer_event_time);
UNSERIALIZE_SCALAR(int_event_time);
if (start_event_time)
schedule(startFrameEvent, start_event_time);
if (end_event_time)
schedule(endFrameEvent, end_event_time);
if (render_pixel_event_time)
schedule(renderPixelEvent, render_pixel_event_time);
if (fill_pixel_buffer_event_time)
schedule(fillPixelBufferEvent, fill_pixel_buffer_event_time);
if (int_event_time)
schedule(intEvent, int_event_time);
vector<Tick> dma_done_event_tick(MAX_OUTSTANDING_DMA_REQ_CAPACITY);
vector<Tick> dma_done_event_burst_len(MAX_OUTSTANDING_DMA_REQ_CAPACITY);
arrayParamIn(cp, section, "dma_done_event_tick", dma_done_event_tick);
arrayParamIn(cp, section, "dma_done_event_burst_length", dma_done_event_burst_len);
dmaDoneEventFree.clear();
for (int x = 0; x < MAX_OUTSTANDING_DMA_REQ_CAPACITY; ++x) {
if (dma_done_event_tick[x]) {
dmaDoneEventAll[x].setTransactionSize(dma_done_event_burst_len[x]);
schedule(dmaDoneEventAll[x], dma_done_event_tick[x]);
} else
dmaDoneEventFree.push_back(&dmaDoneEventAll[x]);
}
assert(MAX_OUTSTANDING_DMA_REQ_CAPACITY - dmaDoneEventFree.size() == dmaPendingNum);
if (frameUnderway) {
updateVideoParams(true);
if (vnc)
vnc->setDirty();
}
}
void
HDLcd::generateInterrupt()
{
int_status = int_rawstat & int_mask;
DPRINTF(HDLcd, "Generate Interrupt: int_rawstat=0x%08x int_mask=0x%08x "
"int_status=0x%08x\n",
(uint32_t)int_rawstat, (uint32_t)int_mask, (uint32_t)int_status);
if (int_status != 0) {
gic->sendInt(intNum);
DPRINTF(HDLcd, " -- Generated\n");
}
}
AddrRangeList
HDLcd::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(RangeSize(pioAddr, pioSize));
return ranges;
}
HDLcd *
HDLcdParams::create()
{
return new HDLcd(this);
}