247 lines
8.6 KiB
Python
247 lines
8.6 KiB
Python
|
# Copyright (c) 2005 The Regents of The University of Michigan
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are
|
||
|
# met: redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer;
|
||
|
# redistributions in binary form must reproduce the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer in the
|
||
|
# documentation and/or other materials provided with the distribution;
|
||
|
# neither the name of the copyright holders nor the names of its
|
||
|
# contributors may be used to endorse or promote products derived from
|
||
|
# this software without specific prior written permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
#
|
||
|
# Authors: Nathan Binkert
|
||
|
# Lisa Hsu
|
||
|
|
||
|
import matplotlib, pylab
|
||
|
from matplotlib.numerix import array, arange, reshape, shape, transpose, zeros
|
||
|
from matplotlib.numerix import Float
|
||
|
|
||
|
matplotlib.interactive(False)
|
||
|
|
||
|
class BarChart(object):
|
||
|
def __init__(self, **kwargs):
|
||
|
self.init(**kwargs)
|
||
|
|
||
|
def init(self, **kwargs):
|
||
|
self.colormap = 'jet'
|
||
|
self.inputdata = None
|
||
|
self.chartdata = None
|
||
|
self.xlabel = None
|
||
|
self.ylabel = None
|
||
|
self.legend = None
|
||
|
self.xticks = None
|
||
|
self.yticks = None
|
||
|
self.title = None
|
||
|
|
||
|
for key,value in kwargs.iteritems():
|
||
|
self.__setattr__(key, value)
|
||
|
|
||
|
def gen_colors(self, count):
|
||
|
cmap = matplotlib.cm.get_cmap(self.colormap)
|
||
|
if count == 1:
|
||
|
return cmap([ 0.5 ])
|
||
|
else:
|
||
|
return cmap(arange(count) / float(count - 1))
|
||
|
|
||
|
# The input data format does not match the data format that the
|
||
|
# graph function takes because it is intuitive. The conversion
|
||
|
# from input data format to chart data format depends on the
|
||
|
# dimensionality of the input data. Check here for the
|
||
|
# dimensionality and correctness of the input data
|
||
|
def set_data(self, data):
|
||
|
if data is None:
|
||
|
self.inputdata = None
|
||
|
self.chartdata = None
|
||
|
return
|
||
|
|
||
|
data = array(data)
|
||
|
dim = len(shape(data))
|
||
|
if dim not in (1, 2, 3):
|
||
|
raise AttributeError, "Input data must be a 1, 2, or 3d matrix"
|
||
|
self.inputdata = data
|
||
|
|
||
|
# If the input data is a 1d matrix, then it describes a
|
||
|
# standard bar chart.
|
||
|
if dim == 1:
|
||
|
self.chartdata = array([[data]])
|
||
|
|
||
|
# If the input data is a 2d matrix, then it describes a bar
|
||
|
# chart with groups. The matrix being an array of groups of
|
||
|
# bars.
|
||
|
if dim == 2:
|
||
|
self.chartdata = transpose([data], axes=(2,0,1))
|
||
|
|
||
|
# If the input data is a 3d matrix, then it describes an array
|
||
|
# of groups of bars with each bar being an array of stacked
|
||
|
# values.
|
||
|
if dim == 3:
|
||
|
self.chartdata = transpose(data, axes=(1,2,0))
|
||
|
|
||
|
def get_data(self):
|
||
|
return self.inputdata
|
||
|
|
||
|
data = property(get_data, set_data)
|
||
|
|
||
|
# Graph the chart data.
|
||
|
# Input is a 3d matrix that describes a plot that has multiple
|
||
|
# groups, multiple bars in each group, and multiple values stacked
|
||
|
# in each bar. The underlying bar() function expects a sequence of
|
||
|
# bars in the same stack location and same group location, so the
|
||
|
# organization of the matrix is that the inner most sequence
|
||
|
# represents one of these bar groups, then those are grouped
|
||
|
# together to make one full stack of bars in each group, and then
|
||
|
# the outer most layer describes the groups. Here is an example
|
||
|
# data set and how it gets plotted as a result.
|
||
|
#
|
||
|
# e.g. data = [[[10,11,12], [13,14,15], [16,17,18], [19,20,21]],
|
||
|
# [[22,23,24], [25,26,27], [28,29,30], [31,32,33]]]
|
||
|
#
|
||
|
# will plot like this:
|
||
|
#
|
||
|
# 19 31 20 32 21 33
|
||
|
# 16 28 17 29 18 30
|
||
|
# 13 25 14 26 15 27
|
||
|
# 10 22 11 23 12 24
|
||
|
#
|
||
|
# Because this arrangement is rather conterintuitive, the rearrange
|
||
|
# function takes various matricies and arranges them to fit this
|
||
|
# profile.
|
||
|
#
|
||
|
# This code deals with one of the dimensions in the matrix being
|
||
|
# one wide.
|
||
|
#
|
||
|
def graph(self):
|
||
|
if self.chartdata is None:
|
||
|
raise AttributeError, "Data not set for bar chart!"
|
||
|
|
||
|
self.figure = pylab.figure()
|
||
|
self.axes = self.figure.add_subplot(111)
|
||
|
|
||
|
dim = len(shape(self.inputdata))
|
||
|
cshape = shape(self.chartdata)
|
||
|
if dim == 1:
|
||
|
colors = self.gen_colors(cshape[2])
|
||
|
colors = [ [ colors ] * cshape[1] ] * cshape[0]
|
||
|
|
||
|
if dim == 2:
|
||
|
colors = self.gen_colors(cshape[0])
|
||
|
colors = [ [ [ c ] * cshape[2] ] * cshape[1] for c in colors ]
|
||
|
|
||
|
if dim == 3:
|
||
|
colors = self.gen_colors(cshape[1])
|
||
|
colors = [ [ [ c ] * cshape[2] for c in colors ] ] * cshape[0]
|
||
|
|
||
|
colors = array(colors)
|
||
|
|
||
|
bars_in_group = len(self.chartdata)
|
||
|
if bars_in_group < 5:
|
||
|
width = 1.0 / ( bars_in_group + 1)
|
||
|
center = width / 2
|
||
|
else:
|
||
|
width = .8 / bars_in_group
|
||
|
center = .1
|
||
|
|
||
|
bars = []
|
||
|
for i,stackdata in enumerate(self.chartdata):
|
||
|
bottom = array([0] * len(stackdata[0]))
|
||
|
stack = []
|
||
|
for j,bardata in enumerate(stackdata):
|
||
|
bardata = array(bardata)
|
||
|
ind = arange(len(bardata)) + i * width + center
|
||
|
bar = self.axes.bar(ind, bardata, width, bottom=bottom,
|
||
|
color=colors[i][j])
|
||
|
stack.append(bar)
|
||
|
bottom += bardata
|
||
|
bars.append(stack)
|
||
|
|
||
|
if self.xlabel is not None:
|
||
|
self.axes.set_xlabel(self.xlabel)
|
||
|
|
||
|
if self.ylabel is not None:
|
||
|
self.axes.set_ylabel(self.ylabel)
|
||
|
|
||
|
if self.yticks is not None:
|
||
|
ymin, ymax = self.axes.get_ylim()
|
||
|
nticks = float(len(self.yticks))
|
||
|
ticks = arange(nticks) / (nticks - 1) * (ymax - ymin) + ymin
|
||
|
self.axes.set_yticks(ticks)
|
||
|
self.axes.set_yticklabels(self.yticks)
|
||
|
|
||
|
if self.xticks is not None:
|
||
|
self.axes.set_xticks(arange(cshape[2]) + .5)
|
||
|
self.axes.set_xticklabels(self.xticks)
|
||
|
|
||
|
if self.legend is not None:
|
||
|
if dim == 1:
|
||
|
lbars = bars[0][0]
|
||
|
if dim == 2:
|
||
|
lbars = [ bars[i][0][0] for i in xrange(len(bars))]
|
||
|
if dim == 3:
|
||
|
number = len(bars[0])
|
||
|
lbars = [ bars[0][number - j - 1][0] for j in xrange(number)]
|
||
|
|
||
|
self.axes.legend(lbars, self.legend, loc='best')
|
||
|
|
||
|
if self.title is not None:
|
||
|
self.axes.set_title(self.title)
|
||
|
|
||
|
def savefig(self, name):
|
||
|
self.figure.savefig(name)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import random, sys
|
||
|
|
||
|
dim = 3
|
||
|
number = 5
|
||
|
|
||
|
args = sys.argv[1:]
|
||
|
if len(args) > 3:
|
||
|
sys.exit("invalid number of arguments")
|
||
|
elif len(args) > 0:
|
||
|
myshape = [ int(x) for x in args ]
|
||
|
else:
|
||
|
myshape = [ 3, 4, 8 ]
|
||
|
|
||
|
# generate a data matrix of the given shape
|
||
|
size = reduce(lambda x,y: x*y, myshape)
|
||
|
#data = [ random.randrange(size - i) + 10 for i in xrange(size) ]
|
||
|
data = [ float(i)/100.0 for i in xrange(size) ]
|
||
|
data = reshape(data, myshape)
|
||
|
|
||
|
# setup some test bar charts
|
||
|
if True:
|
||
|
chart1 = BarChart()
|
||
|
chart1.data = data
|
||
|
|
||
|
chart1.xlabel = 'Benchmark'
|
||
|
chart1.ylabel = 'Bandwidth (GBps)'
|
||
|
chart1.legend = [ 'x%d' % x for x in xrange(myshape[-1]) ]
|
||
|
chart1.xticks = [ 'xtick%d' % x for x in xrange(myshape[0]) ]
|
||
|
chart1.title = 'this is the title'
|
||
|
chart1.graph()
|
||
|
#chart1.savefig('/tmp/test1.png')
|
||
|
|
||
|
if False:
|
||
|
chart2 = BarChart()
|
||
|
chart2.data = data
|
||
|
chart2.colormap = 'gray'
|
||
|
chart2.graph()
|
||
|
#chart2.savefig('/tmp/test2.png')
|
||
|
|
||
|
pylab.show()
|